
Pacemaker Development
Working with the Pacemaker Code Base

Andrew Beekhof

Ken Gaillot

Pacemaker Development

Pacemaker Development
Working with the Pacemaker Code Base
Edition 1

Author Andrew Beekhof andrew@beekhof.net
Author Ken Gaillot kgaillot@redhat.com

Copyright © 2016 Andrew Beekhof.

The text of and illustrations in this document are licensed under version 4.0 or later of the Creative
Commons Attribution-ShareAlike International Public License ("CC-BY-SA")1.

In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide
the URL for the original version.

In addition to the requirements of this license, the following activities are looked upon favorably:
1. If you are distributing Open Publication works on hardcopy or CD-ROM, you provide email

notification to the authors of your intent to redistribute at least thirty days before your manuscript
or media freeze, to give the authors time to provide updated documents. This notification should
describe modifications, if any, made to the document.

2. All substantive modifications (including deletions) be either clearly marked up in the document or
else described in an attachment to the document.

3. Finally, while it is not mandatory under this license, it is considered good form to offer a free copy
of any hardcopy or CD-ROM expression of the author(s) work.

This document has guidelines and tips for developers interested in editing Pacemaker source code
and submitting changes for inclusion in the project.

1 An explanation of CC-BY-SA is available at https://creativecommons.org/licenses/by-sa/4.0/

mailto:andrew@beekhof.net
mailto:kgaillot@redhat.com
https://creativecommons.org/licenses/by-sa/4.0/

iii

Table of Contents
1. Frequently Asked Questions 1

Frequently Asked Questions .. 1

2. C Coding Guidelines 5
2.1. C Boilerplate ... 5
2.2. Formatting .. 5

2.2.1. Whitespace .. 5
2.2.2. Line Length .. 6
2.2.3. Pointers ... 6
2.2.4. Functions ... 6
2.2.5. Control Statements (if, else, while, for, switch) ... 6
2.2.6. Operators ... 7

2.3. Naming Conventions ... 7
2.4. vim Settings .. 7

3. Python Coding Guidelines 9
3.1. Python Boilerplate ... 9
3.2. Python Compatibility ... 9

3.2.1. Python Future Imports .. 10
3.2.2. Other Python Compatibility Requirements .. 10
3.2.3. Python Usages to Avoid ... 11

3.3. Formatting Python Code .. 11

A. Revision History 13

Index 15

iv

Chapter 1.

1

Frequently Asked Questions
Q: Who is this document intended for?

A: Anyone who wishes to read and/or edit the Pacemaker source code. Casual contributors should
feel free to read just this FAQ, and consult other sections as needed.

Q: Where is the source code for Pacemaker?

A: The source code for Pacemaker1 is kept on GitHub2, as are all software projects under the
ClusterLabs3 umbrella. Pacemaker uses Git4 for source code management. If you are a Git
newbie, the gittutorial(7) man page5 is an excellent starting point. If you’re familiar with using Git
from the command line, you can create a local copy of the Pacemaker source code with: git
clone https://github.com/ClusterLabs/pacemaker.git pacemaker

Q: What are the different Git branches and repositories used for?

A:

• The master branch6 is the primary branch used for development.

• The 1.1 branch7 contains the latest official release, and normally does not receive any
changes. During the release cycle, it will contain release candidates for the next official
release, and will receive only bug fixes.

• The 1.0 repository8 is a frozen snapshot of the 1.0 release series, and is no longer developed.

• Messages will be posted to the developers@clusterlabs.org9 mailing list during the release
cycle, with instructions about which branches to use when submitting requests.

Q: How do I build from the source code?

A: See INSTALL.md10 in the main checkout directory.

Q: What coding style should I follow?

A: You’ll be mostly fine if you simply follow the example of existing code. When unsure, see the
relevant section of this document for language-specific recommendations. Pacemaker has grown
and evolved organically over many years, so you will see much code that doesn’t conform to
the current guidelines. We discourage making changes solely to bring code into conformance,
as any change requires developer time for review and opens the possibility of adding bugs.
However, new code should follow the guidelines, and it is fine to bring lines of older code into
conformance when modifying that code for other reasons.

1 https://github.com/ClusterLabs/pacemaker
2 https://github.com/
3 https://github.com/ClusterLabs
4 https://git-scm.com/
5 http://schacon.github.io/git/gittutorial.html
6 https://github.com/ClusterLabs/pacemaker/tree/master
7 https://github.com/ClusterLabs/pacemaker/tree/1.1
8 https://github.com/ClusterLabs/pacemaker-1.0
9 http://clusterlabs.org/mailman/listinfo/developers
10 https://github.com/ClusterLabs/pacemaker/blob/master/INSTALL.md

https://github.com/ClusterLabs/pacemaker
https://github.com/
https://github.com/ClusterLabs
https://git-scm.com/
http://schacon.github.io/git/gittutorial.html
https://github.com/ClusterLabs/pacemaker/tree/master
https://github.com/ClusterLabs/pacemaker/tree/1.1
https://github.com/ClusterLabs/pacemaker-1.0
http://clusterlabs.org/mailman/listinfo/developers
https://github.com/ClusterLabs/pacemaker/blob/master/INSTALL.md
https://github.com/ClusterLabs/pacemaker
https://github.com/
https://github.com/ClusterLabs
https://git-scm.com/
http://schacon.github.io/git/gittutorial.html
https://github.com/ClusterLabs/pacemaker/tree/master
https://github.com/ClusterLabs/pacemaker/tree/1.1
https://github.com/ClusterLabs/pacemaker-1.0
http://clusterlabs.org/mailman/listinfo/developers
https://github.com/ClusterLabs/pacemaker/blob/master/INSTALL.md

Chapter 1. Frequently Asked Questions

2

Q: How should I format my Git commit messages?

A: See existing examples in the git log. The first line should look like change-type: affected-
code: explanation where change-type can be Fix or Bug for most bug fixes,
Feature for new features, Log for changes to log messages or handling, Doc for changes
to documentation or comments, or Test for changes in CTS and regression tests. You will
sometimes see Low, Med (or Mid) and High used instead for bug fixes, to indicate the severity.
The important thing is that only commits with Feature, Fix, Bug, or High will automatically
be included in the change log for the next release. The affected-code is the name of the
component(s) being changed, for example, crmd or libcrmcommon (it’s more free-form, so
don’t sweat getting it exact). The explanation briefly describes the change. The git project
recommends the entire summary line stay under 50 characters, but more is fine if needed for
clarity. Except for the most simple and obvious of changes, the summary should be followed by a
blank line and then a longer explanation of why the change was made.

Q: How can I test my changes?

A: Most importantly, Pacemaker has regression tests for most major components; these will
automatically be run for any pull requests submitted through GitHub. Additionally, Pacemaker’s
Cluster Test Suite (CTS) can be used to set up a test cluster and run a wide variety of complex
tests. This document will have more detail on testing in the future.

Q: What is Pacemaker’s license?

A: Except where noted otherwise in the file itself, the source code for all Pacemaker programs is
licensed under version 2 or later of the GNU General Public License (GPLv2+11), its headers
and libraries under version 2.1 or later of the less restrictive GNU Lesser General Public
License (LGPLv2.1+12), its documentation under version 4.0 or later of the Creative Commons
Attribution-ShareAlike International Public License (CC-BY-SA13), and its init scripts under
the Revised BSD14 license. If you find any deviations from this policy, or wish to inquire about
alternate licensing arrangements, please e-mail andrew@beekhof.net15. Licensing issues are
also discussed on the ClusterLabs wiki16.

Q: How can I contribute my changes to the project?

A: Contributions of bug fixes or new features are very much appreciated! Patches can be submitted
as pull requests17 via GitHub (the preferred method, due to its excellent features18), or e-mailed
to the developers@clusterlabs.org19 mailing list as an attachment in a format Git can import.

Q: What if I still have questions?

11 https://www.gnu.org/licenses/gpl-2.0.html
12 https://www.gnu.org/licenses/lgpl-2.1.html
13 https://creativecommons.org/licenses/by-sa/4.0/legalcode
14 https://opensource.org/licenses/BSD-3-Clause
15 mailto:andrew@beekhof.net
16 http://clusterlabs.org/wiki/License
17 https://help.github.com/articles/using-pull-requests/
18 https://github.com/features/
19 http://clusterlabs.org/mailman/listinfo/developers

https://www.gnu.org/licenses/gpl-2.0.html
https://www.gnu.org/licenses/lgpl-2.1.html
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://opensource.org/licenses/BSD-3-Clause
mailto:andrew@beekhof.net
http://clusterlabs.org/wiki/License
https://help.github.com/articles/using-pull-requests/
https://github.com/features/
http://clusterlabs.org/mailman/listinfo/developers
https://www.gnu.org/licenses/gpl-2.0.html
https://www.gnu.org/licenses/lgpl-2.1.html
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://opensource.org/licenses/BSD-3-Clause
mailto:andrew@beekhof.net
http://clusterlabs.org/wiki/License
https://help.github.com/articles/using-pull-requests/
https://github.com/features/
http://clusterlabs.org/mailman/listinfo/developers

3

A: Ask on the developers@clusterlabs.org20 mailing list for development-related questions, or
on the users@clusterlabs.org21 mailing list for general questions about using Pacemaker.
Developers often also hang out on freenode’s22 #clusterlabs IRC channel.

20 http://clusterlabs.org/mailman/listinfo/developers
21 http://clusterlabs.org/mailman/listinfo/users
22 http://freenode.net/

http://clusterlabs.org/mailman/listinfo/developers
http://clusterlabs.org/mailman/listinfo/users
http://freenode.net/
http://clusterlabs.org/mailman/listinfo/developers
http://clusterlabs.org/mailman/listinfo/users
http://freenode.net/

4

Chapter 2.

5

C Coding Guidelines

Table of Contents
2.1. C Boilerplate ... 5
2.2. Formatting .. 5

2.2.1. Whitespace .. 5
2.2.2. Line Length .. 6
2.2.3. Pointers ... 6
2.2.4. Functions ... 6
2.2.5. Control Statements (if, else, while, for, switch) ... 6
2.2.6. Operators ... 7

2.3. Naming Conventions ... 7
2.4. vim Settings .. 7

2.1. C Boilerplate

Every C file should start like this:

/*
 * Copyright (C) <YYYY[-YYYY]> Andrew Beekhof <andrew@beekhof.net>
 *
 * This source code is licensed under <LICENSE> WITHOUT ANY WARRANTY.
 */

<YYYY> is the year the code was originally created (it is the most important date for copyright
purposes, as it establishes priority and the point from which expiration is calculated). If the code is
modified in later years, add -YYYY with the most recent year of modification.

<LICENSE> should follow the policy set forth in the COPYING1 file, generally one of "GNU General
Public License version 2 or later (GPLv2+)" or "GNU Lesser General Public License version 2.1 or
later (LGPLv2.1+)".

2.2. Formatting

2.2.1. Whitespace

• Indentation must be 4 spaces, no tabs.

• Do not leave trailing whitespace.

1 https://github.com/ClusterLabs/pacemaker/blob/master/COPYING

https://github.com/ClusterLabs/pacemaker/blob/master/COPYING
https://github.com/ClusterLabs/pacemaker/blob/master/COPYING

Chapter 2. C Coding Guidelines

6

2.2.2. Line Length
• Lines should be no longer than 80 characters unless limiting line length significantly impacts

readability.

2.2.3. Pointers

• The * goes by the variable name, not the type:

char *foo;

• Use a space before the * and after the closing parenthesis in a cast:

char *foo = (char *) bar;

2.2.4. Functions

• In the function definition, put the return type on its own line, and place the opening brace by itself on
a line:

static int
foo(void)
{

• For functions with enough arguments that they must break to the next line, align arguments with the
first argument:

static int
function_name(int bar, const char *a, const char *b,
 const char *c, const char *d)
{

• If a function name gets really long, start the arguments on their own line with 8 spaces of
indentation:

static int
really_really_long_function_name_this_is_getting_silly_now(
 int bar, const char *a, const char *b,
 const char *c, const char *d)
{

2.2.5. Control Statements (if, else, while, for, switch)
• The keyword is followed by one space, then left parenthesis without space, condition, right

parenthesis, space, opening bracket on the same line. else and else if are on the same line
with the ending brace and opening brace, separated by a space:

if (condition1) {
 statement1;
} else if (condition2) {
 statement2;

Operators

7

} else {
 statement3;
}

• In a switch statement, case is indented one level, and the body of each case is indented by
another level. The opening brace is on the same line as switch.

switch (expression) {
 case 0:
 command1;
 break;
 case 1:
 command2;
 break;
 default:
 command3;
}

2.2.6. Operators

• Operators have spaces from both sides. Do not rely on operator precedence; use parentheses when
mixing operators with different priority.

• No space is used after opening parenthesis and before closing parenthesis.

x = a + b - (c * d);

2.3. Naming Conventions

• Any exposed symbols in libraries (non-static function names, type names, etc.) must begin with a
prefix appropriate to the library, for example, crm_, pe_, st_, lrm_.

2.4. vim Settings

Developers who use vim to edit source code can add the following settings to their ~/.vimrc file to
follow Pacemaker C coding guidelines:

" follow Pacemaker coding guidelines when editing C source code files
filetype plugin indent on
au FileType c setlocal expandtab tabstop=4 softtabstop=4 shiftwidth=4 textwidth=80
autocmd BufNewFile,BufRead *.h set filetype=c
let c_space_errors = 1

8

Chapter 3.

9

Python Coding Guidelines

Table of Contents
3.1. Python Boilerplate ... 9
3.2. Python Compatibility ... 9

3.2.1. Python Future Imports .. 10
3.2.2. Other Python Compatibility Requirements .. 10
3.2.3. Python Usages to Avoid ... 11

3.3. Formatting Python Code .. 11

3.1. Python Boilerplate

Every Python file should start like this:

[<SHEBANG>]
""" <BRIEF-DESCRIPTION>
"""

Pacemaker targets compatibility with Python 2.6+ and 3.2+
from __future__ import print_function, unicode_literals, absolute_import, division

__copyright__ = "Copyright (C) <YYYY[-YYYY]> Andrew Beekhof <andrew@beekhof.net>"
__license__ = "<LICENSE> WITHOUT ANY WARRANTY"

If the file is meant to be directly executed, the first line (<SHEBANG>) should be #!/usr/bin/
python. If it is meant to be imported, omit this line.

<BRIEF-DESCRIPTION> is obviously a brief description of the file’s purpose. The string may contain
any other information typically used in a Python file docstring1.

The import statement is discussed further in Section 3.2.1, “Python Future Imports”.

<YYYY> is the year the code was originally created (it is the most important date for copyright
purposes, as it establishes priority and the point from which expiration is calculated). If the code is
modified in later years, add -YYYY with the most recent year of modification.

<LICENSE> should follow the policy set forth in the COPYING2 file, generally one of "GNU General
Public License version 2 or later (GPLv2+)" or "GNU Lesser General Public License version 2.1 or
later (LGPLv2.1+)".

3.2. Python Compatibility

Pacemaker targets compatibility with Python 2.6 and later, and Python 3.2 and later. These versions
have added features to be more compatible with each other, allowing us to support both the 2 and 3
series with the same code. It is a good idea to test any changes with both Python 2 and 3.

1 https://www.python.org/dev/peps/pep-0257/
2 https://github.com/ClusterLabs/pacemaker/blob/master/COPYING

https://www.python.org/dev/peps/pep-0257/
https://github.com/ClusterLabs/pacemaker/blob/master/COPYING
https://www.python.org/dev/peps/pep-0257/
https://github.com/ClusterLabs/pacemaker/blob/master/COPYING

Chapter 3. Python Coding Guidelines

10

3.2.1. Python Future Imports
The future imports used in Section 3.1, “Python Boilerplate” mean:

• All print statements must use parentheses, and printing without a newline is accomplished with the
end=' ' parameter rather than a trailing comma.

• All string literals will be treated as Unicode (the u prefix is unnecessary, and must not be used,
because it is not available in Python 3.2).

• Local modules must be imported using from . import (rather than just import). To import one
item from a local module, use from .modulename import (rather than from modulename
import).

• Division using / will always return a floating-point result (use // if you want the integer floor
instead).

3.2.2. Other Python Compatibility Requirements
• When specifying an exception variable, always use as instead of a comma (e.g. except
Exception as e or except (TypeError, IOError) as e). Use e.args to access the error
arguments (instead of iterating over or subscripting e).

• Use in (not has_key()) to determine if a dictionary has a particular key.

• Always use the I/O functions from the io module rather than the native I/O functions (e.g.
io.open() rather than open()).

• When opening a file, always use the t (text) or b (binary) mode flag.

• When creating classes, always specify a parent class to ensure that it is a "new-style" class (e.g.
class Foo(object): rather than class Foo:)

• Be aware of the bytes type added in Python 3. Many places where strings are used in Python 2 use
bytes or bytearrays in Python 3 (for example, the pipes used with subprocess.Popen()). Code
should handle both possibilities.

• Be aware that the items(), keys(), and values() methods of dictionaries return lists in Python
2 and views in Python 3. In many case, no special handling is required, but if the code needs to use
list methods on the result, cast the result to list first.

• Do not name variables with or as.

• Do not raise or catch strings as exceptions (e.g. raise "Bad thing").

• Do not use the cmp parameter of sorting functions (use key instead, if needed) or the __cmp__()
method of classes (implement rich comparison methods such as __lt__() instead, if needed).

• Do not use the buffer type.

• Do not use features not available in all targeted Python versions. Common examples include:

• The argparse, html, ipaddress, sysconfig, and UserDict modules

• The collections.OrderedDict class

• The subprocess.run() function

• The subprocess.DEVNULL constant

Python Usages to Avoid

11

• subprocess module-specific exceptions

• Set literals ({1, 2, 3})

3.2.3. Python Usages to Avoid
Avoid the following if possible, otherwise research the compatibility issues involved (hacky
workarounds are often available):

• long integers

• octal integer literals

• mixed binary and string data in one data file or variable

• metaclasses

• locale.strcoll and locale.strxfrm

• the configparser and ConfigParser modules

• importing compatibility modules such as six (so we don’t have to add them to Pacemaker’s
dependencies)

3.3. Formatting Python Code

• Indentation must be 4 spaces, no tabs.

• Do not leave trailing whitespace.

• Lines should be no longer than 80 characters unless limiting line length significantly impacts
readability. For Python, this limitation is flexible since breaking a line often impacts readability, but
definitely keep it under 120 characters.

• Where not conflicting with this style guide, it is recommended (but not required) to follow PEP 83.

• It is recommended (but not required) to format Python code such that pylint --disable=line-
too-long,too-many-lines,too-many-instance-attributes,too-many-
arguments,too-many-statements produces minimal complaints (even better if you don’t need
to disable all those checks).

3 https://www.python.org/dev/peps/pep-0008/:

https://www.python.org/dev/peps/pep-0008/:
https://www.python.org/dev/peps/pep-0008/:

12

13

Appendix A. Revision History
Revision 1-0 Tue Jul 26 2016 Ken Gaillot kgaillot@redhat.com

Convert coding guidelines and developer FAQ to Publican document

Revision 1-1 Mon Aug 29 2016 Ken Gaillot kgaillot@redhat.com
Add Python coding guidelines, and more about licensing

mailto:kgaillot@redhat.com
mailto:kgaillot@redhat.com

14

15

Index

Symbols
2, 9
3, 9

B
boilerplate, 5, 9
branches, 1

C
C

boilerplate, 5
functions, 6
naming, 7
operators, 7
pointers, 6
whitespace, 5

C boilerplate, 5
commit messages, 2

D
downloads, 1

F
formatting, 11
functions, 6

G
git

commit messages, 2
GitHub, 1

GitHub, 1

L
licensing, 2

C boilerplate, 5
Python boilerplate, 9

M
mailing lists, 3

N
naming, 7

O
operators, 7

P
pointers, 6
Python

2, 9
3, 9
boilerplate, 9
formatting, 11
versions, 9

Python boilerplate, 9

S
source code, 1

V
versions, 9
vim, 7

W
whitespace, 5

16

	Pacemaker Development
	Table of Contents
	Chapter 1. Frequently Asked Questions
	Chapter 2. C Coding Guidelines
	2.1. C Boilerplate
	2.2. Formatting
	2.2.1. Whitespace
	2.2.2. Line Length
	2.2.3. Pointers
	2.2.4. Functions
	2.2.5. Control Statements (if, else, while, for, switch)
	2.2.6. Operators

	2.3. Naming Conventions
	2.4. vim Settings

	Chapter 3. Python Coding Guidelines
	3.1. Python Boilerplate
	3.2. Python Compatibility
	3.2.1. Python Future Imports
	3.2.2. Other Python Compatibility Requirements
	3.2.3. Python Usages to Avoid

	3.3. Formatting Python Code

	Appendix A. Revision History
	Index

