Cluster from Scratch - Apache

Creating an Active/Passive and Active/Active Cluster on Fedora 11

by Andrew Beekhof

pacemaker@clusterlabs.org

Last updated on Thursday, October 22, 2009 for Pacemaker 1.0.5
Table of Contents

Read-Me-First

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Scope of this Document</td>
<td>v</td>
</tr>
<tr>
<td>Formatting conventions used in this document</td>
<td>v</td>
</tr>
<tr>
<td>What Is Pacemaker?</td>
<td>vi</td>
</tr>
<tr>
<td>Types of Pacemaker Clusters</td>
<td>vi</td>
</tr>
<tr>
<td>Pacemaker Architecture</td>
<td>ix</td>
</tr>
</tbody>
</table>

Installation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS Installation</td>
<td>i</td>
</tr>
<tr>
<td>Cluster Software Installation</td>
<td>v</td>
</tr>
<tr>
<td>Tell Fedora Where to Find Pacemaker</td>
<td>v</td>
</tr>
<tr>
<td>Install the Cluster Software</td>
<td>viii</td>
</tr>
<tr>
<td>Prevent OpenAIS Upgrades</td>
<td>x</td>
</tr>
<tr>
<td>Security Shortcuts</td>
<td>xi</td>
</tr>
</tbody>
</table>

Setup

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before You Continue</td>
<td>xii</td>
</tr>
<tr>
<td>Finalize Node Configuration</td>
<td>xii</td>
</tr>
<tr>
<td>Finalize Networking</td>
<td>xii</td>
</tr>
<tr>
<td>Configure SSH</td>
<td>xiii</td>
</tr>
<tr>
<td>Short Node Names</td>
<td>xiv</td>
</tr>
<tr>
<td>Configuring OpenAIS</td>
<td>xv</td>
</tr>
</tbody>
</table>

© Andrew Beekhof 2009
Write the DRBD Config

Initialize and Load DRBD

Populate DRBD with Data

Configure the Cluster for DRBD

Testing Migration

Conversion to Active/Active

Install a Cluster Filesystem - OCFS2

Setup Pacemaker-OCFS2 Integration

Add the DLM service

Add the O2CB service

Create an OCFS2 Filesystem

Preparation

Create and Populate an OCFS2 Partition

Reconfigure the Cluster for OCFS2

Reconfigure Pacemaker for Active/Active

Recovery

Configure STONITH

Why You Need STONITH

What STONITH Device Should You Use

Configuring STONITH

Example

Configuration Recap

Final Cluster Configuration

Node List

Cluster Options
The Scope of this Document

The purpose of this document is to provide a start-to-finish guide to building an example active/passive cluster with Pacemaker and show how it can be converted to an active/active one.

The example cluster will use:

- Fedora 11 as the host operating system
- OpenAIS to provide messaging and membership services,
- Pacemaker to perform resource management,
- DRBD as a cost-effective alternative to shared storage,
- OCFS2 as the cluster filesystem (in active/active mode)
- The crm shell for displaying the configuration and making changes

Given the graphical nature of the Fedora install process, a number of screenshots are included. However the guide is primarily composed of commands, the reasons for executing them and their expected outputs.

Formatting conventions used in this document

command to be executed

```
[root@test1 ~]# command to be executed
Sample output
Part of the output to look for in particular
More output
```

If a command is listed and not followed by any output, then it should be assumed that the command does not produce any.
What Is Pacemaker?

Pacemaker is a cluster resource manager. It achieves maximum availability for your cluster services (aka. resources) by detecting and recovering from node and resource-level failures by making use of the messaging and membership capabilities provided by your preferred cluster infrastructure (either OpenAIS or Heartbeat).

Pacemaker’s key features include:

• Detection and recovery of node and service-level failures
• Storage agnostic, no requirement for shared storage
• Resource agnostic, anything that can be scripted can be clustered
• Support for both large and small clusters
• Optionally ensure data integrity with STONITH
• Ability to specify cluster-wide service ordering, colocation and anti-colocation
• Support for services which need to be active on multiple nodes
• Support for services with multiple modes (eg. master/slave, primary/secondary)
• Unified, scriptable, cluster shell

Types of Pacemaker Clusters

Pacemaker makes no assumptions about your environment, this allows it to support practically any redundancy configuration including Active/Active, Active/Passive, N+1, N+M, N-to-1 and N-to-N.

Two-node Active/Passive clusters using Pacemaker and DRBD are a cost-effective solution for many High Availability situations.
By supporting many nodes, Pacemaker can dramatically reduce hardware costs by allowing several active/passive clusters to be combined and share a common backup node.

When shared storage is available, every node can potentially be used for failover. Pacemaker can even run multiple copies of services to spread out the workload.
Pacemaker Architecture

At the highest level, the cluster is made up of three pieces:

- Core cluster infrastructure providing messaging and membership functionality (illustrated in red)
- Non-cluster aware components (illustrated in blue). In a Pacemaker cluster, these pieces include not only the scripts that know how to start, stop and monitor resources, but also a local daemon that masks the differences between the different standards these scripts implement.
- A brain (illustrated in green) that processes and reacts to events from the cluster (nodes leaving or joining) and resources (e.g., monitor failures) as well as configuration changes from the administrator. In response to all of these events, Pacemaker will compute the ideal state of the cluster and plot a path to achieve it. This may include moving resources, stopping nodes and even forcing them offline with remote power switches.

![Conceptual overview of the cluster stack](image-url)
When combined with OpenAIS, Pacemaker also supports popular open source cluster filesystems. Due to recent standardization in the cluster filesystem community, they make use of a common distributed lock manager which makes use of OpenAIS for its messaging capabilities and Pacemaker for its membership (which nodes are up/down) and fencing services.

Even though Pacemaker also supports Heartbeat, the filesystems need to use the stack for messaging and membership and OpenAIS seems to be what they’re standardizing on. Technically it would be possible for them to support Heartbeat as well, however there seems little interest in this.
Installation

OS Installation

Detailed instructions for installing Fedora are available at http://docs.fedoraproject.org/install-guide/f11/ in a number of languages. The abbreviated version is:

Point your browser to http://fedoraproject.org/en/get-fedora-all, locate the Install Media section and download the install DVD that matches your hardware.

Burn the disk image to a DVD\(^2\) and boot from it. Or use the image to boot a virtual machine as I have done here. After clicking through the welcome screen, select your language and keyboard layout\(^3\)

\(^2\) http://docs.fedoraproject.org/readme-burning-isos/

Assign your machine a host name. I happen to control the clusterlabs.org domain name, so I will use that here.

You will then be prompted to indicate the machine’s physical location and to supply a root password.

Now select where you want Fedora installed. As I don’t care about any existing data, I will accept the default and allow Fedora to use the complete drive.

The next step is to configure networking. Do not accept the default. Cluster machines should **never** obtain an ip address via DHCP. Here I will use the **internal** addresses for the clusterlab.org network.

Next choose which software should be installed. Deselect the default “Office and Productivity” as its not appropriate for a cluster node. We’ll install any needed software later. After you click next, Fedora will begin installing.
Once the node reboots, follow the on screen instructions\(^7\) to create a system user and configure the time. It is highly recommended to enable NTP on your cluster nodes. Doing so ensures all nodes agree on the current time and makes reading log files significantly easier.

Click through the next screens until you reach the login window. Click on the user you created and supply the password you indicated earlier.

Cluster Software Installation

NOTE: Installing the cluster in future versions of Fedora will be significantly easier now that the entire stack has been accepted into the distribution. However for now there are still some hoops to jump through.

Start a terminal by going to Applications -> System Tools -> Terminal

That was the last screenshot by the way, from here on in we’re going to be working from the terminal.

Switch to the super user account. You will need to supply the password you entered earlier during the installation process.

```
su -
```

Note that the username (the text before the @ symbol) now indicates we’re running as the super user “root”.

Tell Fedora Where to Find Pacemaker

Fedora 11 does not ship with Pacemaker, so we need to install it directly from upstream. To do this, we must download and install the YUM repository definition.

```
wget -O /etc/yum.repos.d/pacemaker.repo \
    http://download.opensuse.org/repositories/server:/ha-clustering/Fedora_11/server:ha-clustering.repo
```

Note that downloading the repository may be slow, however the repository definition is very small.

```
100%[==================================================================] 310 --.-K/s  in 0s
```
Before continuing, verify that the repository is installed and that it is providing Pacemaker packages (look for the text highlighted in green).

yum repolist

yum info pacemaker

```
[root@test1 ~]# yum repolist
Loaded plugins: refresh-packagekit
server_ha-clustering |  951 B  00:00
server_ha-clustering/primary |  11 kB  00:00
server_ha-clustering                  31/31
repo id repo name status
fedora Fedora 11 - x86_64 enabled: 16,577
server_ha-clustering High Availability/Clustering server technologies (Fedora_11) enabled: 31
updates Fedora 11 - x86_64 - Updates enabled: 5,947
repolist: 22,555
[root@test1 ~]# yum info pacemaker
Loaded plugins: refresh-packagekit
Available Packages
Name : pacemaker
Arch : i386
Version : 1.0.5
Release : 3.1
Size : 669 k
Repo : server_ha-clustering
Summary : Scalable High-Availability cluster resource manager
URL : http://www.clusterlabs.org
License : GPLv2+ and LGPLv2+
Description: Pacemaker is an advanced, scalable High-Availability cluster resource manager for Linux-HA (Heartbeat) and/or OpenAIS.
It supports "n-node" clusters with significant capabilities for managing resources and dependencies.
It will run scripts at initialization, when machines go up or down, when related resources fail and can be configured to periodically check resource health.
```

```
Name : pacemaker
Arch : x86_64
Version : 1.0.5
Release : 3.1
Size : 698 k
Repo : server_ha-clustering
Summary : Scalable High-Availability cluster resource manager
URL : http://www.clusterlabs.org
License : GPLv2+ and LGPLv2+
Description: Pacemaker is an advanced, scalable High-Availability cluster resource manager for Linux-HA (Heartbeat) and/or OpenAIS.
It supports "n-node" clusters with significant capabilities for managing resources and dependencies.
It will run scripts at initialization, when machines go up or down, when related resources fail and can be configured to periodically check resource health.
```
Install the Cluster Software

The tricky part here is to make yum install openais from the server_ha-clustering repository by specifying the exact version to install. This is necessary as the version that comes with Fedora is incompatible with the one upstream currently uses to build Pacemaker packages.

```
yum install -y "openais = 0.80.5" pacemaker
```

```
[root@test1 ~]# yum install -y "openais = 0.80.5" pacemaker
Loaded plugins: refresh-packagekit
Setting up Install Process
Resolving Dependencies
---> Running transaction check
    ---> Package openais.x86_64 0:0.80.5-15.1 set to be updated
    ---> Package pacemaker.x86_64 0:1.0.5-4.1 set to be updated
    ---> Processing Dependency: pacemaker-libs = 1.0.5-4.1 for package: pacemaker-1.0.5-4.1.x86_64
    ---> Processing Dependency: heartbeat for package: pacemaker-1.0.5-4.1.x86_64
    ---> Processing Dependency: cluster-glue for package: pacemaker-1.0.5-4.1.x86_64
    ---> Processing Dependency: cluster-glue-libs for package: pacemaker-1.0.5-4.1.x86_64
    ---> Processing Dependency: libpengine.so.3()(64bit) for package: pacemaker-1.0.5-4.1.x86_64
    ---> Processing Dependency: libstonith.so.1()(64bit) for package: pacemaker-1.0.5-4.1.x86_64
    ---> Processing Dependency: libpe_rules.so.2()(64bit) for package: pacemaker-1.0.5-4.1.x86_64
    ---> Processing Dependency: libhbclient.so.1()(64bit) for package: pacemaker-1.0.5-4.1.x86_64
    ---> Processing Dependency: libSaMsg.so.2()(64bit) for package: pacemaker-1.0.5-4.1.x86_64
    ---> Processing Dependency: libplumb.so.2()(64bit) for package: pacemaker-1.0.5-4.1.x86_64
    ---> Processing Dependency: libcrmcluster.so.1()(64bit) for package: pacemaker-1.0.5-4.1.x86_64
    ---> Processing Dependency: libstonithd.so.0()(64bit) for package: pacemaker-1.0.5-4.1.x86_64
    ---> Processing Dependency: libcib.so.1()(64bit) for package: pacemaker-1.0.5-4.1.x86_64
    ---> Processing Dependency: libpe_status.so.2()(64bit) for package: pacemaker-1.0.5-4.1.x86_64
    ---> Processing Dependency: libccmclient.so.1()(64bit) for package: pacemaker-1.0.5-4.1.x86_64
    ---> Processing Dependency: libesmtp.so.5()(64bit) for package: pacemaker-1.0.5-4.1.x86_64
    ---> Processing Dependency: liblrm.so.2()(64bit) for package: pacemaker-1.0.5-4.1.x86_64
    ---> Processing Dependency: libtransitioner.so.1()(64bit) for package: pacemaker-1.0.5-4.1.x86_64
    ---> Processing Dependency: libcmncommon.so.2()(64bit) for package: pacemaker-1.0.5-4.1.x86_64
    ---> Processing Dependency: libipls.so.2()(64bit) for package: pacemaker-1.0.5-4.1.x86_64
    ---> Running transaction check
    ---> Package cluster-glue.x86_64 0:1.0-12.1 set to be updated
    ---> Processing Dependency: libopenhpi.so.2()(64bit) for package: cluster-glue-1.0-12.1.x86_64
    ---> Processing Dependency: libOpenIPMIUtlis.so.0()(64bit) for package: cluster-glue-1.0-12.1.x86_64
    ---> Processing Dependency: libOpenIPMIposix.so.0()(64bit) for package: cluster-glue-1.0-12.1.x86_64
    ---> Processing Dependency: libOpenIPMI.so.0()(64bit) for package: cluster-glue-1.0-12.1.x86_64
    ---> Package cluster-glue-libs.x86_64 0:1.0-12.1 set to be updated
    ---> Package heartbeat.x86_64 0:1.0-33.2 set to be updated
    ---> Processing Dependency: PyXML for package: heartbeat-3.0-0-33.2.x86_64
    ---> Processing Dependency: resource-agents for package: heartbeat-3.0-0-33.2.x86_64
    ---> Package libesmtp.x86_64 0:1.0.4-10.fc11 set to be updated
    ---> Package libopenais2.x86_64 0:0.88.5-15.1 set to be updated
    ---> Package pacemaker-libs.x86_64 0:1.0.5-4.1 set to be updated
    ---> Running transaction check
    ---> Package OpenIPMI-libs.x86_64 0:2.0.16-1.fc11 set to be updated
    ---> Package PyXML.x86_64 0:0.8.4-14 set to be updated
    ---> Package openhpi-libs.x86_64 0:2.14.0-2.fc11 set to be updated
    ---> Package resource-agents.x86_64 0:1.0-31.4 set to be updated
    ---> Finished Dependency Resolution

Dependencies Resolved

=======================================================================================================
© Andrew Beekhof 2009
Cluster from Scratch - DRBD, OCFS2 and Apache on Fedora 11 viii
<table>
<thead>
<tr>
<th>Package</th>
<th>Arch</th>
<th>Version</th>
<th>Repository</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>openais</td>
<td>x86_64</td>
<td>0.80.5-15.1</td>
<td>server_ha-clustering</td>
<td>464 k</td>
</tr>
<tr>
<td>pacemaker</td>
<td>x86_64</td>
<td>1.0.5-4.1</td>
<td>server_ha-clustering</td>
<td>698 k</td>
</tr>
<tr>
<td>OpenIPMI-libs</td>
<td>x86_64</td>
<td>2.0.16-1.fc11</td>
<td>fedora</td>
<td>548 k</td>
</tr>
<tr>
<td>PyXML</td>
<td>x86_64</td>
<td>0.8.4-14</td>
<td>fedora</td>
<td>1.1 M</td>
</tr>
<tr>
<td>cluster-glue</td>
<td>x86_64</td>
<td>1.0-12.1</td>
<td>server_ha-clustering</td>
<td>1.4 M</td>
</tr>
<tr>
<td>cluster-glue-libs</td>
<td>x86_64</td>
<td>1.0-12.1</td>
<td>server_ha-clustering</td>
<td>1.2 M</td>
</tr>
<tr>
<td>heartbeat</td>
<td>x86_64</td>
<td>3.0.0-33.2</td>
<td>server_ha-clustering</td>
<td>1.7 M</td>
</tr>
<tr>
<td>libesmtp</td>
<td>x86_64</td>
<td>1.0.4-10.fc11</td>
<td>fedora</td>
<td>62 k</td>
</tr>
<tr>
<td>libopenais2</td>
<td>x86_64</td>
<td>0.80.5-15.1</td>
<td>server_ha-clustering</td>
<td>457 k</td>
</tr>
<tr>
<td>openhpi-libs</td>
<td>x86_64</td>
<td>2.14.0-2.fc11</td>
<td>fedora</td>
<td>169 k</td>
</tr>
<tr>
<td>pacemaker-libs</td>
<td>x86_64</td>
<td>1.0.5-4.1</td>
<td>server_ha-clustering</td>
<td>2.8 M</td>
</tr>
<tr>
<td>resource-agents</td>
<td>x86_64</td>
<td>1.0-31.4</td>
<td>server_ha-clustering</td>
<td>180 k</td>
</tr>
</tbody>
</table>

Transaction Summary

Install 12 Package(s)
Update 0 Package(s)
Remove 0 Package(s)

Total download size: 11 M

Downloading Packages:
(1/12): OpenIPMI-libs-2.0.16-1.fc11.x86_64.rpm | 548 kB 00:00
(2/12): PyXML-0.8.4-14.x86_64.rpm             | 1.1 MB 00:01
(3/12): cluster-glue-1.0-12.1.x86_64.rpm     | 1.4 MB 00:01
(4/12): cluster-glue-libs-1.0-12.1.x86_64.rpm | 1.2 MB 00:01
(5/12): heartbeat-3.0.0-33.2.x86_64.rpm      | 1.7 MB 00:01
(6/12): libesmtp-1.0.4-10.fc11.x86_64.rpm    | 62 kB 00:00
(7/12): libopenais2-0.80.5-15.1.x86_64.rpm   | 457 kB 00:00
(8/12): openais-0.80.5-15.1.x86_64.rpm       | 464 kB 00:00
(9/12): openhpi-libs-2.14.0-2.fc11.x86_64.rpm | 169 kB 00:00
(10/12): pacemaker-1.0.5-4.1.x86_64.rpm      | 698 kB 00:00
(11/12): pacemaker-libs-1.0.5-4.1.x86_64.rpm | 2.8 MB 00:01
(12/12): resource-agents-1.0-31.4.x86_64.rpm | 180 kB 00:00

Total 277 kB/s | 11 MB 00:39

Running rpm_check_debug
Running Transaction Test
Finished Transaction Test
Transaction Test Succeeded

Running Transaction
Installing: libopenais2-0.80.5-15.1.x86_64 1/12
Installing: openhpi-libs-2.14.0-2.fc11.x86_64 2/12
Installing: libesmtp-1.0.4-10.fc11.x86_64 3/12
Installing: openais-0.80.5-15.1.x86_64 4/12
Installing: PyXML-0.8.4-14.x86_64 5/12
Installing: OpenIPMI-libs-2.0.16-1.fc11.x86_64 6/12
Installing: cluster-glue-libs-1.0-12.1.x86_64 7/12
Installing: cluster-glue-1.0-12.1.x86_64 8/12
Installing: resource-agents-1.0-31.4.x86_64 9/12
Installing: heartbeat-3.0.0-33.2.x86_64 10/12
Installing: pacemaker-libs-1.0.5-4.1.x86_64 11/12
Installing: pacemaker-1.0.5-4.1.x86_64 12/12
Prevent OpenAIS Upgrades

We now need to ensure that `yum` won't install a newer version of openais when we upgrade. To do this, we must install and configure a standard Fedora package called `yum-plugin-versionlock`.

```bash
yum install -y yum-plugin-versionlock
rpm -q --qf "%(name)-%(version)-%(release)-%(arch)\n" openais > /etc/yum/pluginconf.d/versionlock.list
cat /etc/yum/pluginconf.d/versionlock.list
```

```
[root@test1 ~]# yum install -y yum-plugin-versionlock
Loaded plugins: refresh-packagekit
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package yum-plugin-versionlock.noarch 0:1.1.22-1.fc11 set to be updated
---> Finished Dependency Resolution

Dependencies Resolved

===
Package Arch Version Repository Size
===
Installing:
yum-plugin-versionlock noarch 1.1.22-1.fc11 updates 15 k

Transaction Summary
===
Install 1 Package(s)
Update 0 Package(s)
Remove 0 Package(s)

Total download size: 15 k
```

```
Downloading Packages:
yum-plugin-versionlock-1.1.22-1.fc11.noarch.rpm | 15 kB 00:00
```

```
Running rpm_check_debug
Running Transaction Test
Finished Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : yum-plugin-versionlock-1.1.22-1.fc11.noarch

Installed:
yum-plugin-versionlock.noarch 0:1.1.22-1.fc11
```
Security Shortcuts

To simplify this guide and focus on the aspects directly connected to clustering, we will now disable the machine's firewall and SELinux installation. Both of these actions create significant security issues and should not be performed on machines that will be exposed to the outside world.

    sed -i.gres "s/SELINUX=enforcing/SELINUX=permissive/g" /etc/selinux/config
    /sbin/chkconfig --del iptables

Now reboot all nodes so the new security settings take effect.
Before You Continue

Repeat the Installation steps so that you have 2 Fedora nodes with the cluster software installed.

For the purposes of this document, the additional node is called test2 with address 19.168.9.42.

Finalize Node Configuration

Finalize Networking

Confirm that you can communicate with the two new nodes:

```
ping -c 3 192.168.9.42
```

```
[root@test1 ~]# ping -c 3 192.168.9.42
PING 192.168.9.42 (192.168.9.42) 56(84) bytes of data.
64 bytes from 192.168.9.42: icmp_seq=1 ttl=64 time=0.343 ms
64 bytes from 192.168.9.42: icmp_seq=2 ttl=64 time=0.402 ms
64 bytes from 192.168.9.42: icmp_seq=3 ttl=64 time=0.558 ms

--- 192.168.9.42 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2000ms
rtt min/avg/max/mdev = 0.343/0.434/0.558/0.092 ms
```

Now we need to make sure we can communicate with the machines by their name. If you have a DNS server, add additional entries for the three machines. Otherwise, you’ll need to add the machines to /etc/hosts. Below are the entries for my cluster nodes:

```
grep test /etc/hosts
```

```
[root@test1 ~]# grep test /etc/hosts
192.168.9.41 test1.clusterlabs.org test1
192.168.9.42 test2.clusterlabs.org test2
```

We can now verify the setup by again using ping:

```
ping test2
```

```
[root@test1 ~]# ping -c 3 test2
PING test2.clusterlabs.org (192.168.9.41) 56(84) bytes of data.
64 bytes from test1.clusterlabs.org (192.168.9.41): icmp_seq=1 ttl=64 time=0.164 ms
64 bytes from test1.clusterlabs.org (192.168.9.41): icmp_seq=2 ttl=64 time=0.475 ms
64 bytes from test1.clusterlabs.org (192.168.9.41): icmp_seq=3 ttl=64 time=0.186 ms

--- test2.clusterlabs.org ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2001ms
rtt min/avg/max/mdev = 0.164/0.275/0.475/0.141 ms
```
Configure SSH

SSH is a convenient and secure way to copy files and perform commands remotely. For the purposes of this guide, we will create a key without a password (using the -N "" option) so that we can perform remote actions without being prompted.

**NOTE:** Unprotected SSH keys, those without a password, are not recommended for servers exposed to the outside world.

Create a new key and allow anyone with that key to log in:

```bash
ssh-keygen -t dsa -f ~/.ssh/id_dsa -N ""
cp .ssh/id_dsa.pub .ssh/authorized_keys
```

```
Generating public/private dsa key pair.
Your identification has been saved in /root/.ssh/id_dsa.
Your public key has been saved in /root/.ssh/id_dsa.pub.
The key fingerprint is:
91:09:5c:82:5a:6a:50:08:4e:b2:0c:62:de:cc:74:44 root@test1.clusterlabs.org
The key's randomart image is:
+--[DSA 1024]-----+
|==.ooEo.. |
|X O + .o o |
| * A + |
| + . |
| . S |
| |
| |
| |
+-----------------+
```

```
[root@test1 ~]# ssh-keygen -t dsa -f ~/.ssh/id_dsa -N ""
Generating public/private dsa key pair.
Your identification has been saved in /root/.ssh/id_dsa.
Your public key has been saved in /root/.ssh/id_dsa.pub.
The key fingerprint is:
91:09:5c:82:5a:6a:50:08:4e:b2:0c:62:de:cc:74:44 root@test1.clusterlabs.org
The key's randomart image is:
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
Short Node Names

During installation, we filled in the machine’s fully qualifier domain name (FQDN) which can be rather long when it appears in cluster logs and status output. See for yourself how the machine identifies itself:

```bash
uname -n
dnsdomainname
```

```
[root@test1 ~]# uname -n
test1.clusterlabs.org
[root@test1 ~]# dnsdomainname
clusterlabs.org
```

The output from the second command is fine, but we really don’t need the domain name included in the basic host details. To address this, we need to update `/etc/sysconfig/network`. This is what it should look like before we start.

```bash
cat /etc/sysconfig/network
```

```
NETWORKING=yes
HOSTNAME=test1.clusterlabs.org
GATEWAY=192.168.9.1
```

All we need to do now is strip off the domain name portion, which is stored elsewhere anyway.

```bash
sed -i.gres 's/\.[a-z].*//g' /etc/sysconfig/network
```

```
[root@test1 ~]# sed -i.gres 's/\.[a-z].*//g' /etc/sysconfig/network
```

Now confirm the change was successful. The revised file contents should look something like this.

```bash
cat /etc/sysconfig/network
```

```
NETWORKING=yes
HOSTNAME=test1
GATEWAY=192.168.9.1
```

However we’re not finished. The machine won’t normally see the shortened host name until about it reboots, but we can force it to update

```bash
source /etc/sysconfig/network
dnsdomainname $HOSTNAME
```

```
[root@test1 ~]# source /etc/sysconfig/network
dnsdomainname $HOSTNAME
```

Now check the machine is using the correct names

```bash
uname -n
dnsdomainname
```

```
[root@test1 ~]# uname -n
test1
[root@test1 ~]# dnsdomainname
clusterlabs.org
```

Now repeat on `test2`.

© Andrew Beekhof 2009
Configuring OpenAIS

Choose a port number and multi-cast address.

Be sure that the values you chose do not conflict with any existing clusters you might have. For advice on choosing a multi-cast address, see http://www.29west.com/docs/THPM/multicast-address-assignment.html

For this document, I have chosen port 4000 and used 226.94.1.1 as the multi-cast address.

```sh
export ais_port=4000
export ais_mcast=226.94.1.1
```

Next we automatically determine the hosts address. By not using the full address, we make the configuration suitable to be copied to other nodes.

```sh
export ais_addr=`ip addr | grep "inet " | tail -n 1 | awk '{print $4}' | sed s/255/0/`
```

Display and verify the configuration options

```sh
env | grep ais_
```

Once you’re happy with the chosen values, update the OpenAIS configuration

```sh
sed -i.gres "s/.*mcastaddr:.*/mcastaddr: $ais_mcast/g" /etc/ais/openais.conf
sed -i.gres "s/.*mcastport:.*/mcastport: $ais_port/g" /etc/ais/openais.conf
sed -i.gres "s/.*bindnetaddr:.*/bindnetaddr: $ais_addr/g" /etc/ais/openais.conf
```

The final configuration should look something like the sample in the appendix.

Propagate the Configuration

Now we need to copy the changes so far to the other node:

```sh
for f in /etc/ais/openais.conf /etc/hosts; do scp $f test2:$f ; done
```

Verify OpenAIS Installation

Start OpenAIS on the first node

```sh
/etc/init.d/openais start
```

8 http://en.wikipedia.org/wiki/Multicast
9 http://en.wikipedia.org/wiki/Multicast_address
Check the cluster started correctly and that an initial membership was able to form

```
grep -e "openais.*network interface" -e "AIS Executive Service" /var/log/messages

grep CLM /var/log/messages
```

With one node functional, its now safe to start OpenAIS on the second node as well.

```
ssh test2 -- /etc/init.d/openais start
```

Check the cluster formed correctly

```
grep CPG /var/log/messages
```
Verify Pacemaker Installation

Now that we have confirmed that OpenAIS is functional we can check the rest of the stack.

grep pcmk_plugin_init /var/log/messages

The exact node id will depend on the IP address of the node, unless you also chose 192.168.9.41, you should expect to see a number other than 688498880.

Now verify the Pacemaker processes have been started

ps axf

And finally, check for any ERRORs during startup, there shouldn’t be any, and display the cluster’s status.

grep ERROR: /var/log/messages | grep -v unpack_resources

crm_mon

Using Pacemaker Tools

In the dark past, configuring Pacemaker required the administrator to read and write XML. In true UNIX style, there were also a number of different commands that specialized in different aspects of querying and updating the cluster.

Since Pacemaker 1.0, this has all changed and we have an integrated, scriptable, cluster shell that hides all the messy XML scaffolding. It even allows you to queue up several changes at once and commit them atomically.

Take some time to familiarize yourself with what it can do.

crm --help

```
[root@test1 ~]# crm --help

usage:
crm [-D display_type]
crm [-D display_type] args
crm [-D display_type] [-f file]

Use crm without arguments for an interactive session.
Supply one or more arguments for a "single-shot" use.
Specify with -f a file which contains a script. Use '-' for standard input or use pipe/redirection.

crm displays cli format configurations using a color scheme
and/or in uppercase. Pick one of "color" or "uppercase", or
use "-D color,uppercase" if you want colorful uppercase.
Get plain output by "-D plain". The default may be set in
user preferences (options).

Examples:

  # crm -f stopapp2.cli
  # crm < stopapp2.cli
  # crm resource stop global_www
  # crm status
```

The primary tool for monitoring the status of the cluster is `crm_mon` (also available as `crm status`). It can be run in a variety of modes and has a number of output options. To find out about any of the tools that come with Pacemaker, simply invoke them with the --help option or consult the included man pages. Both sets of output are created from the tool, and so will always be in sync with each other and the tool itself.

Additionally, the Pacemaker version and supported cluster stack(s) is available via the --version option.

crm_mon --version

crm_mon --help

```
[root@test1 ~]# crm_mon --version
crm_mon 1.0.5 for OpenAIS and Heartbeat (Build: 462f1569a43740667daf7b0f6b521742e9eb8fa7)

Written by Andrew Beekhof
[root@test1 ~]# crm_mon --help

crm_mon - Provides a summary of cluster's current state.
Outputs varying levels of detail in a number of different formats.
```
Usage:crm_mon mode [options]

Options:
-?., --help This text
-., --version Version information
-V., --verbose Increase debug output

Modes:
-h, --as-html=value Write cluster status to the named file
-w, --web-cgi Web mode with output suitable for cgi
-s, --simple-status Display the cluster status once as a simple one line output (suitable for nagios)
-S, --snmp-traps=value Send SNMP traps to this station
-T, --mail-to=value Send Mail alerts to this user. See also --mail-from, --mail-host, --mail-prefix

Display Options:
-n, --group-by-node Group resources by node
-r, --inactive Display inactive resources
-f, --failcounts Display resource fail counts
-o, --operations Display resource operation history
-t, --timing-details Display resource operation history with timing details

Additional Options:
-i, --interval=value Update frequency in seconds
-l, --one-shot Display the cluster status once on the console and exit
-N, --disable-ncurses Disable the use of ncurses
-d, --daemonize Run in the background as a daemon
-p, --pid-file=value (Advanced) Daemon pid file location
-F, --mail-from=value Mail alerts should come from the named user
-H, --mail-host=value Mail alerts should be sent via the named host
-P, --mail-prefix=value Subjects for mail alerts should start with this string
-E, --external-agent=value A program to run when resource operations take place.
-e, --external-recipient=value A recipient for your program (assuming you want the program to send something to someone).

Examples:

Display the cluster’s status on the console with updates as they occur:

 # crm_mon

Display the cluster’s status on the console just once then exit:

 # crm_mon

Display your cluster’s status, group resources by node, and include inactive resources in the list:

 # crm_mon --group-by-node --inactive

Start crm_mon as a background daemon and have it write the cluster’s status to an HTML file:

 # crm_mon --daemonize --as-html /path/to/docroot/filename.html

Start crm_mon as a background daemon and have it send email alerts:

 # crm_mon --daemonize --mail-to user@example.com --mail-host mail.example.com

Start crm_mon as a background daemon and have it send SNMP alerts:

 # crm_mon --daemonize --snmp-traps

© Andrew Beekhof 2009

crm_mon --daemonize --snmp-traps snmptrapd.example.com

Report bugs to pacemaker@oss.clusterlabs.org
Create an Active/Passive Cluster

Exploring the Existing Configuration

When Pacemaker starts up, it automatically records the number and details of the nodes in the cluster as well as which stack is being used and the version of Pacemaker being used.

This is what the base configuration should look like.

```
crm configure show

[root@test2 ~]# crm configure show
node test1
test2
property $id="cib-bootstrap-options" 
    dc-version="1.0.5-462f1569a43740667daf7b0f6b521742e9eb8fa7" 
    cluster-infrastructure="openais" 
    expected-quorum-votes="2"
```

For those that are not of afraid of XML, you can see the raw configuration by appending “xml” to the previous command.

```
crm configure show xml

[root@test2 ~]# crm configure show xml
<?xml version="1.0" ?><cib admin_epoch="0" crm_feature_set="3.0.1" dc-uuid="test1" epoch="13" have-quorum="1" num_updates="7" validate-with="pacemaker-1.0">
    <configuration>
        <crm_config>
            <cluster_property_set id="cib-bootstrap-options">
                <nvpair id="cib-bootstrap-options-dc-version" name="dc-version" value="1.0.5-462f1569a43740667daf7b0f6b521742e9eb8fa7"/>
                <nvpair id="cib-bootstrap-options-cluster-infrastructure" name="cluster-infrastructure" value="openais"/>
                <nvpair id="cib-bootstrap-options-expected-quorum-votes" name="expected-quorum-votes" value="2"/>
            </cluster_property_set>
        </crm_config>
    </configuration>
</cib>
```
Before we make any changes, its a good idea to check the validity of the configuration.

```
crm_verify -L
```

```[root@test1 ~]# crm_verify -L
crm_verify[2195]: 2009/08/27_16:57:12 ERROR: unpack_resources: No STONITH resources have been defined
crm_verify[2195]: 2009/08/27_16:57:12 ERROR: unpack_resources: Either configure some or disable STONITH with the stonith-enabled option
crm_verify[2195]: 2009/08/27_16:57:12 ERROR: unpack_resources: NOTE: Clusters with shared data need STONITH to ensure data integrity
   Errors found during check: config not valid
   -V may provide more details
   [root@test1 ~]#
```

As you can see, the tool has found some errors.

In order to guarantee the safety of your data10, Pacemaker ships with STONITH11 enabled. However it also knows when no STONITH configuration has been supplied and reports this as a problem (since the cluster would not be able to make progress if a situation requiring node fencing arose).

For now, we will disable this feature and configure it later in the Configuring STONITH section. It is important to note that the use of STONITH is highly encouraged, turning it off tells the cluster to simply pretend that failed nodes are safely powered off. Some vendors will even refuse to support clusters that have it disabled.

To disable STONITH, we set the stonith-enabled cluster option to false.

```
crm configure property stonith-enabled=false
crm_verify -L
```

```[root@test1 ~]# crm configure property stonith-enabled=false
[root@test1 ~]# crm_verify -L
[root@test1 ~]#
```

With the new cluster option set, the configuration is now valid.

10 If the data is corrupt, there is little point in continuing to make it available

11 A common node fencing mechanism. Used to ensure data integrity by powering off “bad” nodes.
Adding a Resource

The first thing we should do is configure an IP address. Regardless of where the cluster service(s) are running, we need a consistent address to contact them on. Here I will choose and add 192.168.9.101 as the floating address, give it the imaginative name ClusterIP and tell the cluster to check that its running every 30 seconds.

Important: The chosen address must not be one already associated with a physical node

```bash
  crm configure primitive ClusterIP ocf:heartbeat:IPaddr2 \
       params ip=192.168.9.101 cidr_netmask=32 \
       op monitor interval=30s
```

The other important piece of information here is `ocf:heartbeat:IPaddr2`. This tells Pacemaker three things about the resource you want to add. The first field, `ocf`, is the standard to which the resource script conforms to and where to find it. The second field is specific to OCF resources and tells the cluster which namespace to find the resource script in, in this case `heartbeat`. The last field indicates the name of the resource script.

To obtain a list of the available resource classes, run

```bash
  crm ra classes
```

```
  [root@test1 ~]# crm ra classes
  heartbeat
  lsb
  ocf / heartbeat pacemaker
  stonith
```

To then find all the OCF resource agents provided by Pacemaker and Heartbeat, run

```bash
  crm ra list ocf heartbeat
  crm ra list ocf pacemaker
```

```
  [root@test1 ~]# crm ra list ocf pacemaker
  ClusterMon  Dummy  Stateful  SysInfo  SystemHealth  controld
  ping        pingd
  [root@test1 ~]# crm ra list ocf heartbeat
  AoETarget   AudibleAlarm  ClusterMon  Delay
  Dummy       EwmsSCC     Evmsd       Filesystem
  ICP         IPaddr      IPaddr2    IPsrcaddr
  LVM         LinuxSCSI   MailTo     ManageRAID
  ManageVE    Pure-FTpd   Raid1       Route
  SAPDatabase SapInstance SendArp     ServeRAID
  SphinxSearchDaemon Squid      Stateful SysInfo
  VIPArip     VirtualDomain WAS       WAS6
  WinPopup    Xen         Xinetd     anything
  apache      db2         drbd        eDir88
  iSCSIlogicalUnit iSCSITarget ids       iscsi
  ldirectord  mysql       mysql-proxy nfsserver
  oracle      oralsnr     pgsql       pingd
  portblock   rsysncd     scsi2reservation sfex
  tomcat      vmware
  [root@test1 ~]#
```
Now verify that the IP resource has been added and display the cluster's status to see that it is now active.

```
crm configure show

crm_mon

[root@test1 ~]# crm configure show
node test1
node test2
primitive ClusterIP ocf:heartbeat:IPaddr2 
    params ip="192.168.9.101" cidr_netmask="32" 
    op monitor interval="30s"
property $id="cib-bootstrap-options" 
    dc-version="1.0.5-462f1569a3740667daf7b0f6b521742e9eb8fa7" 
    cluster-infrastructure="openais" 
    expected-quorum-votes="2" 
    stonith-enabled="false"
[root@test1 ~]# crm_mon
```

Stack: openais
Current DC: test1 - partition with quorum
Version: 1.0.5-462f1569a3740667daf7b0f6b521742e9eb8fa7
2 Nodes configured, 2 expected votes
1 Resources configured.

Online: [test1 test2]

ClusterIP (ocf::heartbeat:IPaddr): Started test1

Perform a Failover

Being a high-availability cluster, we should test failover of our new resource before moving on.

First, find the node on which the IP address is running.

```
crm resource status ClusterIP

[root@test1 ~]# crm resource status ClusterIP
resource ClusterIP is running on: test1
[root@test1 ~]#
```

Shut down OpenAIS on that machine.

```
ssh test1 -- /etc/init.d/openais stop

[root@test1 ~]# ssh test1 -- /etc/init.d/openais stop
Stopping OpenAIS daemon (aisexec): ........OK
[root@test1 ~]#
```
Once OpenAIS is no longer running, go to the other node and check the cluster status with `crm_mon`.

```
[root@test2 ~]# crm_mon
==========
Stack: openais
Current DC: test2 - partition WITHOUT quorum
Version: 1.0.5-462f1569a43740667daf7b0f6b521742e9eb8fa7
2 Nodes configured, 2 expected votes
1 Resources configured.
==========

Online: [ test2 ]
OFFLINE: [ test1 ]
```

There are three things to notice about the cluster’s current state. The first is that, as expected, test1 is now offline. However we can also see that `ClusterIP` isn’t running anywhere!

Quorum and Two-Node Clusters

This is because the cluster no longer has quorum, as can be seen by the text “partition WITHOUT quorum” (highlighted green) in the output above. In order to reduce the possibility of data corruption, Pacemaker’s default behavior is to stop all resources if the cluster does not have quorum.

A cluster is said to have quorum when more than half the known or expected nodes are online, or for the mathematically inclined, whenever the following equation is true:

\[
\text{total nodes} - 1 < 2 \times \text{active nodes}
\]

Therefore a two-node cluster only has quorum when both nodes are running, which is no longer the case for our cluster. This would normally make the creation of a two-node cluster pointless\(^\text{12}\), however it is possible to control how Pacemaker behaves when quorum is lost. In particular, we can tell the cluster to simply ignore quorum altogether.

```
crm configure property no-quorum-policy=ignore
```

```
[root@test1 ~]# crm configure property no-quorum-policy=ignore
[root@test1 ~]# crm configure show
node test1
node test2
primitive ClusterIP ocf:heartbeat:IPaddr2 \n    params ip="192.168.9.101" cidr_netmask="32" \n    op monitor interval="30s"
property $id="cib-bootstrap-options" \n    dc-version="1.0.5-462f1569a43740667daf7b0f6b521742e9eb8fa7" \n    cluster-infrastructure="openais" \n    expected-quorum-votes="2" \n    stonith-enabled="false" \n    no-quorum-policy="ignore"
```

\(^\text{12}\) Actually some would argue that two-node clusters are always pointless, but that is an argument for another time.
After a few moments, the cluster will start the IP address on the remaining node. Note that the cluster still does not have quorum.

```
[root@test2 ~]# crm_mon
============
Last updated: Fri Aug 28 15:30:18 2009
Stack: openais
Current DC: test2 - partition WITHOUT quorum
Version: 1.0.5-462f1569a3740667daf7b0f6b521742e9eb8fa7
2 Nodes configured, 2 expected votes
1 Resources configured.
============
Online: [ test2 ]
OFFLINE: [ test1 ]
ClusterIP (ocf::heartbeat:IPaddr): Started test2
```

Now simulate node recovery by restarting the cluster stack on test1 and check the cluster’s status.

```
/etc/init.d/openais start

crm_mon
```

```
[root@test1 ~]# /etc/init.d/openais start
Starting OpenAIS daemon (aisexec): starting... rc=0: OK
[root@test1 ~]# crm_mon
============
Stack: openais
Current DC: test2 - partition with quorum
Version: 1.0.5-462f1569a3740667daf7b0f6b521742e9eb8fa7
2 Nodes configured, 2 expected votes
1 Resources configured.
============
Online: [ test1 test2 ]
ClusterIP (ocf::heartbeat:IPaddr): Started test1
```

Here we see something that some may consider surprising, the IP is back running at its original location!
Prevent Resources from Moving after Recovery

In some circumstances it is highly desirable to prevent healthy resources from being moved around the cluster. Move resources almost always requires a period of downtime and for complex services like Oracle databases, this period can be quite long.

To address this, Pacemaker has the concept of resource stickiness which controls how much a service prefers to stay running where it is. You may like to think of it as the “cost” of any downtime. By default, Pacemaker assumes there is zero cost associated with moving resources and will do so to achieve “optimal” resource placement. We can specify a different stickiness for every resource, but it is often sufficient to change the default.

```
crm configure rsc_defaults resource-stickiness=100
```

```
crm configure show
```

If we now retry the failover test, we see that as expected `ClusterIP` still moves to `test2` when `test1` is taken offline.

```
ssh test1 -- /etc/init.d/openais stop
```

```
ssh test2 -- crm_mon -1
```

```
[root@test1 ~]# ssh test1 -- /etc/init.d/openais stop
Stopping OpenAIS daemon (aisexec): ........OK
[root@test1 ~]# ssh test2 -- crm_mon -1

Stack: openais
Current DC: test2 - partition WITHOUT quorum
Version: 1.0.5-462f1569a43740667daf7b0f6b521742e9eb8fa7
2 Nodes configured, 2 expected votes
1 Resources configured.

Online: [ test2 ]
OFFLINE: [ test1 ]

ClusterIP (ocf::heartbeat:IPaddr): Started test2
```

It should be noted that Pacemaker’s definition of optimal may not always agree with that of a human’s. The order in which Pacemaker processes lists of resources and nodes create implicit preferences (required in order to create a stable solution) in situations where the administrator had not explicitly specified some.
However when we bring test1 back online, ClusterIP now remains running on test2.

```
[root@test1 ~]#/etc/init.d/openais start
Starting OpenAIS daemon (aisexec): starting... rc=0: OK
[root@test1 ~]# crm_mon
=============
Stack: openais
Current DC: test2 - partition with quorum
Version: 1.0.5-462f1569a43740667daf7b8f6b521742e9eb8fa7
2 Nodes configured, 2 expected votes
1 Resources configured.
============
Online: [ test1 test2 ]
ClusterIP (ocf::heartbeat:IPaddr): Started test2
```
Now that we have a basic but functional active/passive two-node cluster, we’re ready to add some real services. We’re going to start with Apache because it’s a feature of many clusters and relatively simple to configure.

Preparation

First we need to create a page for Apache to serve up. On Fedora 11 the default Apache docroot is `/var/www/html`, so we’ll create an index file there.

```bash
[root@test1 ~]# cat <<-END >/var/www/html/index.html
<html>
<body>My Test Site - test1</body>
</html>
END
[root@test1 ~]#
```

For the moment, we will simplify things by serving up only a static site and manually sync the data between the two nodes. So run the command again on test2.

```bash
[root@test2 ~]# cat <<-END >/var/www/html/index.html
<html>
<body>My Test Site - test2</body>
</html>
END
[root@test2 ~]#
```
Update the Configuration

At this point, Apache is ready to go, all that needs to be done is to add it to the cluster. Let's call the resource WebSite. We need to use an OCF script called apache in the heartbeat namespace, the only required parameter is the path to the main Apache configuration file and we'll tell the cluster to check once a minute that apache is still running.

 crm configure primitive WebSite ocf:heartbeat:apache
 params configfile=/etc/httpd/conf/httpd.conf
 op monitor interval=1min
 crm configure show

.crm_mon

 [root@test1 ~]# crm configure primitive WebSite ocf:heartbeat:apache params configfile=/etc/httpd/conf/httpd.conf
 [root@test1 ~]# crm configure show
 node test1
 node test2
 primitive WebSite ocf:heartbeat:apache
 params configfile="/etc/httpd/conf/httpd.conf"
 op monitor interval="1min"
 primitive ClusterIP ocf:heartbeat:IPaddr2
 params ip="192.168.9.101" cidr_netmask="32"
 op monitor interval="30s"
 property $id="cib-bootstrap-options"
 dc-version="1.0.5-462f1569a43740667daf7b0f6b521742e9eb8fa7"
 cluster-infrastructure="openais"
 expected-quorum-votes="2"
 stonith-enabled="false"
 no-quorum-policy="ignore"
 rsc_defaults $id="rsc-options"
 resource-stickiness="100"

After a short delay, we should see the cluster start apache

 [root@test1 ~]# crm_mon
 ================
 Last updated: Fri Aug 28 16:12:49 2009
 Stack: openais
 Current DC: test2 - partition with quorum
 Version: 1.0.5-462f1569a43740667daf7b0f6b521742e9eb8fa7
 2 Nodes configured, 2 expected votes
 2 Resources configured.
 ================

 Online: [test1 test2]

 ClusterIP (ocf::heartbeat:IPaddr): Started test2
 WebSite (ocf::heartbeat:apache): Started test1

Wait a moment, the WebSite resource isn't running on the same host as our IP address!

14 Compare the key used here ocf:heartbeat:apache with the one we used earlier for the IP address: ocf:heartbeat:IPaddr2
Ensuring Resources Run on the Same Host

To reduce the load on any one machine, Pacemaker will generally try to spread the configured resources across the cluster nodes. However we can tell the cluster that `WebSite` can only run on the host that `ClusterIP` is active on. If `ClusterIP` is not active anywhere, `WebSite` will not be permitted to run anywhere.

```bash
crm configure colocation website-with-ip INFINITY: WebSite ClusterIP
```

```bash
crm configure show
```

```bash
node test1
node test2
```

```bash
primitive WebSite ocf:heartbeat:apache \
  params configfile="/etc/httpd/conf/httpd.conf" \
  op monitor interval="1min"
primitive ClusterIP ocf:heartbeat:IPaddr2 \
  params ip="192.168.9.101" cidr_netmask="32" \
  op monitor interval="30s"
colocation website-with-ip inf: WebSite ClusterIP
property $id="cib-bootstrap-options" \
  dc-version="1.0.5-462f1569a43740667daf7b0f6b521742e9eb8fa7" \
  cluster-infra="openais" \
  expected-quorum-votes="2" \
  stonith-enabled="false" \
  no-quorum-policy="ignore"
```

```bash
rsc_defaults $id="rsc-options" \
  resource-stickiness="100"
```

```bash
[root@test1 ~]# crm_mon
```

```
Last updated: Fri Aug 28 16:14:34 2009
Stack: openais
Current DC: test2 - partition with quorum
Version: 1.0.5-462f1569a43740667daf7b0f6b521742e9eb8fa7
2 Nodes configured, 2 expected votes
2 Resources configured.
```

```
Online: [ test1 test2 ]
```

```
ClusterIP (ocf::heartbeat:IPaddr): Started test2
WebSite  (ocf::heartbeat:apache): Started test2
```
Controlling Resource Start/Stop Ordering

When Apache starts, it binds to the available IP addresses. It doesn’t know about any addresses we add afterwards, so not only do they need to run on the same node, but we need to make sure `ClusterIP` is already active before we start `WebSite`. We do this by adding an ordering constraint. We need to give it a name (chose something descriptive like `apache-after-ip`), indicate that its mandatory (so that any recovery for `ClusterIP` will also trigger recovery of `WebSite`) and list the two resources in the order we need them to start.

```plaintext
crm configure order apache-after-ip mandatory: ClusterIP WebSite
```

```plaintext
[root@test1 ~]# crm configure order apache-after-ip mandatory: ClusterIP WebSite
[root@test1 ~]# crm configure show
node test1
node test2
primitive WebSite ocf:heartbeat:apache \
  params configfile="/etc/httpd/conf/httpd.conf" \
  op monitor interval="1min"
primitive ClusterIP ocf:heartbeat:IPaddr2 \
  params ip="192.168.9.101" cidr_netmask="32" \
  op monitor interval="30s"
colocation website-with-ip inf: WebSite ClusterIP
order apache-after-ip inf: ClusterIP WebSite
property $id="cib-bootstrap-options" \
  dc-version="1.0.5-462f1569a43740667daf7b0f6b521742e9eb8fa7" \
  cluster-infrastructure="openais" \
  expected-quorum-votes="2" \
  stonith-enabled="false" \
  no-quorum-policy="ignore"
```

```plaintext
rsc_defaults $id="rsc-options" \
  resource-stickiness="100"
```
Specifying a Preferred Location

Pacemaker does not rely on any sort of hardware symmetry between nodes, so it may well be that one machine is more powerful than the other. In such cases it makes sense to host the resources there if it is available. To do this we create a location constraint. Again we give it a descriptive name (prefer-test1), specify the resource we want to run there (WebSite), how badly we’d like it to run there (we’ll use 50 for now, but in a two-node situation almost any value above 0 will do) and the host’s name.

 crm configure location prefer-test1 WebSite rule 50: test1
 crm configure show

 crm_mon

```
[root@test1 ~]# crm configure location prefer-test1 WebSite 50: test1
[root@test1 ~]# crm configure show
node test1
node test2
primitive WebSite ocf:heartbeat:apache \
   params configfile="/etc/httpd/conf/httpd.conf" \
   op monitor interval="1min"
primitive ClusterIP ocf:heartbeat:IPaddr2 \
   params ip="192.168.9.101" cidr_netmask="32" \
   op monitor interval="30s"
location prefer-test1 WebSite 50: test1
colocation website-with-ip inf: WebSite ClusterIP
property $id="cib-bootstrap-options" \
   dc-version="1.0.5-462f1569a43740667daf7bf0f6b521742e9eb8fa7" \
   cluster-infrastructure="openais" \
   expected-quorum-votes="2" \
   stonith-enabled="false" \
   no-quorum-policy="ignore"
rsc_defaults $id="rsc-options" \
   resource-stickiness="100"
[root@test1 ~]# crm_mon
```

[Last updated: Fri Aug 28 16:17:35 2009]
Stack: openais
Current DC: test2 - partition with quorum
Version: 1.0.5-462f1569a43740667daf7bf0f6b521742e9eb8fa7
2 Nodes configured, 2 expected votes
2 Resources configured.

```
[Online: [ test1 test2 ]]
ClusterIP (ocf::heartbeat:IPaddr): Started test2
WebSite (ocf::heartbeat:apache): Started test2
```

Wait a minute, the resources are still on test2!

Even though we now prefer test1 over test2, that preference is (intentionally) less than the resource stickiness (how much we preferred not to have unnecessary downtime).

To see the current placement scores, you can use a tool called ptest

 ptest -sL
There is a way to force them to move though...

Manually Moving Resources Around the Cluster

There are always times when an administrator needs to override the cluster and force resources to move to a specific location. Underneath we use location constraints like the one we created above, happily you don’t need to care. Just provide the name of the resource and the intended location, we’ll do the rest.

```
crm resource move WebSite test1
```

```
crm_mon
```

```
[root@test1 ~]# crm resource move WebSite test1
[root@test1 ~]# crm_mon

-------------
Stack: openais
Current DC: test2 - partition with quorum
Version: 1.0.5-462f1569a43740667da7b0f6b521742e9eb8fa7
2 Nodes configured, 2 expected votes
2 Resources configured.
-------------

Online: [ test1 test2 ]

ClusterIP (ocf::heartbeat:IPaddr): Started test1
WebSite (ocf::heartbeat:apache): Started test1

Notice how the colocation rule we created has ensured that ClusterIP was also moved to test1.

For the curious, we can see the effect of this command by examining the configuration

```
crm configure show
```

```
[root@test1 ~]# crm configure show
node test1
node test2
primitive WebSite ocf:heartbeat:apache
 params configfile="/etc/httpd/conf/httpd.conf"
 op monitor interval="1min"
primitive ClusterIP ocf:heartbeat:IPaddr2
 params ip="192.168.9.101" cidr_netmask="32"
 op monitor interval="30s"
location cli-prefer-WebSite WebSite
 rule $id="cli-prefer-rule-WebSite" inf: #uname eq test1
location prefer-test1 WebSite 50: test1
colocation website-with-ip inf: WebSite ClusterIP
property $id="cib-bootstrap-options"
 dc-version="1.0.5-462f1569a43740667da7b0f6b521742e9eb8fa7"
 cluster-infrastructure="openais"
 expected-quorum-votes="2"
 stonith-enabled="false"
 no-quorum-policy="ignore"
 rsc_defaults $id="rsc-options"
 resource-stickiness="100"
```

*Highlighted is the automated constraint used to move the resources to test1*
Giving Control Back to the Cluster

Once we’ve finished whatever activity that required us to move the resources to test1, in our case nothing, we can then allow the cluster to resume normal operation with the `unmove` command. Since we previously configured a default stickiness, the resources will remain on **test1**.

```bash
crm resource unmove WebSite

crm configure show
```

```
[root@test1 ~]# crm resource unmove WebSite
[root@test1 ~]# crm configure show
node test1
node test2
primitive WebSite ocf:heartbeat:apache \
 params configfile="/etc/httpd/conf/httpd.conf" \
 op monitor interval="1min"
primitive ClusterIP ocf:heartbeat:IPaddr2 \
 params ip="192.168.9.101" cidr_netmask="32" \
 op monitor interval="30s"
location prefer-test1 WebSite 50: test1
colocation website-with-ip inf: WebSite ClusterIP
property $id="cib-bootstrap-options" \
 dc-version="1.0.5-462f1569a43740667da77b0f6b521742e9eb8fa7" \
 cluster-infrastructure="openais" \
 expected-quorum-votes="2" \
 stonith-enabled="false" \
 no-quorum-policy="ignore"
props_defaults $id="rsc-options" \
 resource-stickiness="100"
```

Note that the automated constraint is now gone. If we check the cluster status, we can also see that as expected the resources are still active on **test1**.

```
[root@test1 ~]# crm_mon

Stack: openais
Current DC: test2 - partition with quorum
Version: 1.0.5-462f1569a43740667da77b0f6b521742e9eb8fa7
2 Nodes configured, 2 expected votes
2 Resources configured.

Online: [test1 test2]

ClusterIP (ocf::heartbeat:IPaddr): Started test1
WebSite (ocf::heartbeat:apache): Started test1
```
Using DRBD for Shared Storage

Even if you’re serving up static websites, having to manually synchronize the contents of that website to all the machines in the cluster is not ideal. For dynamic websites, such as a wiki, its not even an option. Not everyone care afford network-attached storage but somehow the data needs to be kept in sync. Enter DRBD which can be thought of as network based RAID-1. See http://www.drbd.org/ for more details.

Install Pre-requisites

DRBD does not currently ship with Fedora and since there is a kernel component, can be sensitive to system updates which may change the kernel’s APIs and ABIs. For this reason we’ll simply build our own DRBD packages - to be sure they are a perfect match for the machine.

First we need to install a few packages that DRBD needs:

```
yum install -y flex gcc glibc-devel kernel-headers kernel-devel rpm-build
```

```
[root@test1 ~]# yum install -y flex gcc glibc-devel kernel-headers kernel-devel rpm-build
Loaded plugins: refresh-packagekit, versionlock
Reading version lock configuration
Setting up Install Process
Resolving Dependencies
---> Running transaction check
----> Package flex.x86_64 0:2.5.35-5.fc11 set to be updated
----> Package gcc.x86_64 0:4.4.1-2.fc11 set to be updated
---> Processing Dependency: cloog-ppl >= 0.15 for package: gcc-4.4.1-2.fc11.x86_64
----> Package glibc-devel.x86_64 0:2.10.1-4 set to be updated
---> Processing Dependency: glibc-headers = 2.10.1-4 for package: glibc-devel-2.10.1-4.x86_64
----> Package kernel-devel.x86_64 0:2.6.29.6-217.2.16.fc11 set to be installed
----> Package kernel-headers.x86_64 0:2.6.29.6-217.2.16.fc11 set to be updated
----> Package rpm-build.x86_64 0:4.7.1-1.fc11 set to be updated
---> Processing Dependency: elfutils >= 0.128 for package: rpm-build-4.7.1-1.fc11.x86_64
---> Processing Dependency: xz for package: rpm-build-4.7.1-1.fc11.x86_64
---> Running transaction check
----> Package cloog-ppl.x86_64 0:0.15-0.9.gitb9d79.fc11 set to be updated
---> Processing Dependency: libppl.so.7()(64bit) for package: cloog-ppl-0.15-0.9.gitb9d79.fc11.x86_64
---> Processing Dependency: libppl_c.so.2()(64bit) for package: cloog-ppl-0.15-0.9.gitb9d79.fc11.x86_64
----> Package elfutils.x86_64 0:0.142-1.fc11 set to be updated
---> Processing Dependency: elfutils-libs-x86_64 = 0.142-1.fc11 for package: elfutils-0.142-1.fc11.x86_64
---> Processing Dependency: libdw.so.1(ELFUTILS_0.127)(64bit) for package: elfutils-0.142-1.fc11.x86_64
---> Processing Dependency: libasm.so.1(ELFUTILS_1.0)(64bit) for package: elfutils-0.142-1.fc11.x86_64
---> Processing Dependency: libdw.so.1(ELFUTILS_0.126)(64bit) for package: elfutils-0.142-1.fc11.x86_64
---> Processing Dependency: libdw.so.1(ELFUTILS_0.138)(64bit) for package: elfutils-0.142-1.fc11.x86_64
---> Processing Dependency: libdw.so.1(ELFUTILS_0.122)(64bit) for package: elfutils-0.142-1.fc11.x86_64
---> Processing Dependency: libasm.so.1()(64bit) for package: elfutils-0.142-1.fc11.x86_64
```

© Andrew Beekhof 2009
Package glibc-headers.x86_64 0:2.10.1-4 set to be updated
Package xz.x86_64 0:4.999.8-0.8.beta.20090817git.fc11 set to be updated
Running transaction check
Package elfutils-libs.x86_64 0:0.142-1.fc11 set to be updated
Package ppl.x86_64 0:0.10.2-3.fc11 set to be updated
Finished Dependency Resolution

Dependencies Resolved

==============================================================================================
Package Arch Version                                     Repository     Size
==============================================================================================
Installing:
flex  x86_64 2.5.35-5.fc11                             fedora       319 k
gcc   x86_64 4.4.1-2.fc11                              updates       11 M
glibc-devel x86_64 2.10.1-4 updates                  998 k
kernel-devel  x86_64 2.6.29.6-217.2.16.fc11 updates  6.2 M
kernel-headers x86_64 2.6.29.6-217.2.16.fc11 updates  855 k
rpm-build  x86_64 4.7.1-1.fc11                         updates       128 k
Installing for dependencies:
cloog-ppl  x86_64 0.15-0.9.gitb9d79.fc11              updates       90 k
elfutils  x86_64 0.142-1.fc11                          updates      232 k
elfutils-libs  x86_64 0.142-1.fc11                   updates      205 k
glibc-headers  x86_64 2.10.1-4                         updates      630 k
ppl    x86_64 0.10.2-3.fc11                           updates      1.7 M
xz     x86_64 4.999.8-0.8.beta.20090817git.fc11        updates      123 k

Transaction Summary
==============================================================================================
Install 12 Package(s)
Update 0 Package(s)
Remove 0 Package(s)
Total size: 22 M
Downloading Packages:
Running rpm_check_debug
Running Transaction Test
Finished Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : elfutils-libs-0.142-1.fc11.x86_64 1/12
Installing : elfutils-0.142-1.fc11.x86_64  2/12
Installing : xz-4.999.8-0.8.beta.20090817git.fc11.x86_64  3/12
Installing : ppl-0.10.2-3.fc11.x86_64   4/12
Installing : cloog-ppl-0.15-0.9.gitb9d79.fc11.x86_64  5/12
Installing : kernel-headers-2.6.29.6-217.2.16.fc11.x86_64  6/12
Installing : rpm-build-4.7.1-1.fc11.x86_64  7/12
Installing : flex-2.5.35-5.fc11.x86_64       8/12
Installing : glibc-headers-2.10.1-4.x86_64  9/12
Installing : glibc-devel-2.10.1-4.x86_64    10/12
Installing : kernel-devel-2.6.29.6-217.2.16.fc11.x86_64  11/12
Installing : glibc-devel-2.10.1-4.x86_64    12/12
Installing:
flex.x86_64 0:2.5.35-5.fc11             gcc.x86_64 0:4.4.1-2.fc11
glibc-devel.x86_64 0:2.10.1-4            kernel-devel.x86_64 0:2.6.29.6-217.2.16.fc11
kernel-headers.x86_64 0:2.6.29.6-217.2.16.fc11 rpm-build.x86_64 0:4.7.1-1.fc11

© Andrew Beekhof 2009

Cluster from Scratch - DRBD, OCFS2 and Apache on Fedora 11
xxxvii
Build DRBD Packages

Once the development packages are installed, we can begin building DRBD\(^\text{15}\).

```
wget http://oss.linbit.com/drbd/8.3/drbd-8.3.2.tar.gz

```

```
tar zxf drbd-8.3.2.tar.gz

cd drbd-8.3.2

```

```
rag -i.gres "s/%files\ -f\ %{_builddir}/%{name}-%{version}\//%files\ -f\ /g" drbd.spec.in

grep files.*file.list spec.in

make rpm
```

The following build log is quite long and is only included for reference in case it does not work on your machine. Most people can skip to the end.

```
[root@test1 ~]# wget http://oss.linbit.com/drbd/8.3/drbd-8.3.2.tar.gz
Resolving oss.linbit.com... 212.69.161.111
Connecting to oss.linbit.com|212.69.161.111|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 415152 (405K) [application/x-gzip]
Saving to: `drbd-8.3.2.tar.gz'

100%[=======================================>] 415,152 1.05M/s in 0.4s

2009-08-31 10:58:39 (1.05 MB/s) - `drbd-8.3.2.tar.gz' saved [415152/415152]
```

```
[root@test1 ~]# tar zxf drbd-8.3.2.tar.gz
[root@test1 ~]# cd drbd-8.3.2
[root@test1 drbd-8.3.2]# sed -i.gres "s/%files\ -f\ %\(_builddir\)\/%(name)\-%(version)\/%files\ -f\ /g" drbd.spec.in
[root@test1 drbd-8.3.2]# grep files.*file.list spec.in

%files -f file.list
```

```
[root@test1 drbd-8.3.2]# make rpm
```

\(^{15}\) At the time of writing, the latest version was 8.3.2. If a later version is now available it would be advisable to try that first.
make: Leaving directory `/root/drbd-8.3.2/documentation'
test -e .filelist
ln -sf drbd/linux/drbd_config.h drbd_config.h
rm -f drbd-8.3.2
ln -s drbd-8.3.2
for f in `cat .filelist` ; do [-e $f ] && continue ; echo missing: $f ; exit 1; done
grep debian .filelist /dev/null 2>&1 && DEB=debian || DEB="" ;
tar --owner=root --group=root -czf - .filelist > drbd-8.3.2$DEB.tar.gz
rm drbd-8.3.2
mkdir -p dist/BUILD \
dist/RPMS \
dist/SPECS \
dist/SOURCES \
dist/TMP \
dist/install \
dist/SRPMS
[ -h dist/SOURCES/drbd-8.3.2.tar.gz ] || \
ln -s /root/drbd-8.3.2/drbd-8.3.2.tar.gz \
/root/drbd-8.3.2/SOURCES/drbd-8.3.2.tar.gz
if test drbd.spec.in -nt dist/SPECS/drbd.spec ; then \
    sed -e 's/(Version: ).*$/1 8.3.2.2/;\' \
    -e 's/(Packager: ).*/root@test1/;\' < drbd.spec.in \
    > dist/SPECS/drbd.spec ; \
fi
rpmbuild -bb \
    --define "_topdir /root/drbd-8.3.2/dist" \
    --define "buildroot /root/drbd-8.3.2/dist/install" \
    --define "kernelversion 2.6.29.6-217.2.16.fc11.x86_64" \
    --define "kdir /lib/modules/2.6.29.6-217.2.16.fc11.x86_64/build" \
    \
    /root/drbd-8.3.2/dist/SPECS/drbd.spec
Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.uU3DHT
+ umask 022
+ cd /root/drbd-8.3.2/dist/BUILD
+ cd /root/drbd-8.3.2/dist/BUILD
+ rm -rf drbd-8.3.2
+ /usr/bin/gzip -dc /root/drbd-8.3.2/dist/SOURCES/drbd-8.3.2.tar.gz
+ /bin.tar -xvzf -
-rw-r--r-- root/root 875 2008-11-24 11:43 drbd-8.3.2/.gitignore
drwxr-xr-x Creating directory: drbd-8.3.2
-rw-r--r-- root/root 17990 2008-11-24 11:43 drbd-8.3.2/COPYING
-rw-r--r-- root/root 25537 2009-07-03 13:39 drbd-8.3.2/ChangeLog
-rw-r--r-- root/root 7034 2009-05-26 14:49 drbd-8.3.2/Makefile
-rw-r--r-- root/root 425 2009-05-26 14:49 drbd-8.3.2/README
-rw-r--r-- root/root 2122 2009-05-26 14:49 drbd-8.3.2/ROADMAP
drwxr-xr-x Creating directory: drbd-8.3.2/benchmark
-rw-r--r-- root/root 191 2009-05-26 14:49 drbd-8.3.2/benchmark/Makefile
drwxr-xr-x Creating directory: drbd-8.3.2/benchmark
-rw-r--r-- root/root 95 2007-10-22 17:38 drbd-8.3.2/benchmark/README
-rw-r--r-- root/root 18173 2008-11-24 11:43 drbd-8.3.2/benchmark/dm.c
-rw-r--r-- root/root 8639 2008-11-24 11:43 drbd-8.3.2/benchmark/io-latency-test.c
-rw-r--r-- root/root 3770 2009-05-26 14:49 drbd-8.3.2/documentation
-rw-r--r-- root/root 2860 2008-11-24 11:43 drbd-8.3.2/documentation/Makefile.lang
-rw-r--r-- root/root 57228 2009-06-25 10:28 drbd-8.3.2/documentation/drbd.conf.sgml
-rw-r--r-- root/root 3931 2009-06-09 13:33 drbd-8.3.2/documentation/drbd.sgml
-rw-r--r-- root/root 16524 2009-06-25 10:28 drbd-8.3.2/documentation/drbdadm.sgml
-rw-r--r-- root/root 2750 2009-05-26 14:49 drbd-8.3.2/documentation/drbdddisk.sgml
Cluster from Scratch - DRBD, OCFS2 and Apache on Fedora 11
rm -f drbd_buildtag.c drbd_strings.c
rm -f *
make[2]: Leaving directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/user'
make[2]: Entering directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/scripts'
rm -f *
rm -rf datadisk
make[2]: Leaving directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/scripts'
make[2]: Entering directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/documentation'
To clean the documentation: make doc-clean
make[2]: Leaving directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/documentation'
make[2]: Entering directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd'
rm -rf .tmp_versions
make[2]: Leaving directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd'
rm -f *
rm -rf dist
make[1]: Leaving directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2'
+ [ -e /etc/redhat-release ]'
+ make all doc PREFIX=/root/drbd-8.3.2/dist/install/ MANDIR=/usr/share/man KDIR=/lib/modules/2.6.29.6-217.2.16.fc11.x86_64/build LOCALVERSION=
make[1]: Entering directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2'
make -C drbd drbd_buildtag.c
make[2]: Entering directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd'
make[2]: Entering directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/user'
flex -s -odrbdadm_scanner.c drbdadm_scanner.fl
gcc -O1 -c -W -Wall -I../drbd   -c -o drbdadm_scanner.o drbdadm_scanner.c
gcc -O1 -c -W -Wall -I../drbd   -c -o drbdadm_parser.o drbdadm_parser.c
gcc -O1 -c -W -Wall -I../drbd   -c -o drbdadm_main.o drbdadm_main.c
drbdadm_main.c: In function 'sanity_check_abs_cmd':
drbdadm_main.c:2440: warning: suggest parentheses around operand of '!' or change '&=' to '&&' or '!' to '~'
gcc -O1 -c -W -Wall -I../drbd   -c -o drbdadm_adjust.o drbdadm_adjust.c
gcc -O1 -c -W -Wall -I../drbd   -c -o drbdtool_common.o drbdtool_common.c
gcc -O1 -c -W -Wall -I../drbd   -c -o drbdadm_usage_cnt.o drbdadm_usage_cnt.c
cp ../drbd/drbd_buildtag.c drbd_buildtag.c
drbd_buildtag.c:2440: warning: suggest parentheses around operand of '!' or change '&=' to '&&' or '!' to '~'
cp ../drbd/drbd_strings.c drbd_strings.c
gcc -O1 -c -W -Wall -I../drbd -I/lib/modules/2.6.29.6-217.2.16.fc11.x86_64/build/include   -c -o drbdsetup.o drbdsetup.c
cp ../drbd/drbdmeta.o drbdmeta.o drbdmeta.c
gcc -O1 -c -W -Wall -I../drbd -I/lib/modules/2.6.29.6-217.2.16.fc11.x86_64/build/include   -c -o drbdsetup.o drbdsetup.c
gcc -O1 -c -W -Wall -I../drbd Strings.o drbd_strings.o
gcc -O1 -c -W -Wall -I../drbd -I/lib/modules/2.6.29.6-217.2.16.fc11.x86_64/build/include   -c -o drbdsetup.o drbdsetup.o
make[2]: Leaving directory '/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/user'
make[2]: Entering directory '/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/scripts'
make[2]: Nothing to be done for 'all'.
make[2]: Entering directory '/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/documentation'
To (re)make the documentation: make doc
make[2]: Entering directory '/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/documentation'
Userland tools build was successful.
make[2]: Entering directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd'

Calling toplevel makefile of kernel source tree, which I believe is in
KDIR=/lib/modules/2.6.29.6-217.2.16.fc11.x86_64/build

```
test -f ../scripts/adjust_drbd_config_h.sh &&
KDIR=/lib/modules/2.6.29.6-217.2.16.fc11.x86_64/build O=~/bin/bash ../scripts/adjust_drbd_config_h.sh
~/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd
```

Using unmodified drbd_config.h

make -C /lib/modules/2.6.29.6-217.2.16.fc11.x86_64/build SUBDIRS=/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd

make[3]: Entering directory `/usr/src/kernels/2.6.29.6-217.2.16.fc11.x86_64'

```
CC [M] /root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd/drbd_buildtag.o
CC [M] /root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd/drbd_bitmap.o
CC [M] /root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd/drbd_proc.o
CC [M] /root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd/drbd_worker.o
CC [M] /root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd/drbd_receiver.o
CC [M] /root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd/drbd_req.o
CC [M] /root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd/drbd_actlog.o
CC [M] /root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd/lru_cache.o
CC [M] /root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd/drbd_main.o
CC [M] /root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd/drbd_strings.o
CC [M] /root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd/drbd_nl.o
LD [M] /root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd.o
```

Building modules, stage 2.

```
MODPOST 1 modules
 CC /root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd/drdb.mod.o
 LD [M] /root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd.ko
```

make[3]: Leaving directory `/usr/src/kernels/2.6.29.6-217.2.16.fc11.x86_64'

```
mv .drbd_kernelrelease.new .drbd_kernelrelease
Memorizing module configuration ... done.
```

make[2]: Leaving directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd'

```
Module build was successful.
```

make -C documentation doc
make[2]: Entering directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/documentation'
make[2]: Nothing to be done for `doc'.
make[2]: Leaving directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/documentation'
make[1]: Leaving directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd'

```
+ exit 0
Executing(%install): /bin/sh -e /var/tmp/rpm-tmp.LIk02d
 + umask 022
 + cd /root/drbd-8.3.2/dist/BUILD
 + cd drbd-8.3.2
 + make install PREFIX=/root/drbd-8.3.2/dist/install/ MANDIR=/usr/share/man
make[1]: Entering directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd'
make[2]: Entering directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/user'
install -d /root/drbd-8.3.2/dist/install/sbin/
if getent group haclient > /dev/null 2> /dev/null ; then
 install -g haclient -m 4750 drbdsetup /root/drbd-8.3.2/dist/install/sbin/ ;
 install -g haclienet -m 4750 drbdmeta /root/drbd-8.3.2/dist/install/sbin/ ;
else
 install -m 755 drbdadm /root/drbd-8.3.2/dist/install/sbin/ ;
```

© Andrew Beekhof 2009
install -m 755 drbdadm /root/drbd-8.3.2/dist/install//sbin/;

fi
mkdir -p /root/drbd-8.3.2/dist/install//var/lib/drbd
make[2]: Entering directory '/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/user'
mkdir -p /root/drbd-8.3.2/dist/install//etc/ha.d/resource.d
install -d - /root/drbd-8.3.2/dist/install//etc/rc.d/init.d/
install -m 755 drbd /root/drbd-8.3.2/dist/install//etc/rc.d/init.d/drbd
install -m 755 drbdadmin /root/drbd-8.3.2/dist/install//etc/ha.d/resource.d
install -m 755 drbdupper /root/drbd-8.3.2/dist/install//etc/ha.d/resource.d
mkdir -p /root/drbd-8.3.2/dist/install//etc/udev/rules.d
mkdir -p /root/drbd-8.3.2/dist/install//etc/bash_completion.d
install -d /root/drbd-8.3.2/dist/install//usr/sbin
install -m 755 outdate-peer.sh /root/drbd-8.3.2/dist/install//usr/sbin/drbd
install -m 755 outdate-peer.sh /root/drbd-8.3.2/dist/install//usr/sbin/drbd
install -m 755 snapshot-resync-target-lvm.sh /root/drbd-8.3.2/dist/install//usr/sbin/drbd
install -m 755 notify.sh /root/drbd-8.3.2/dist/install//usr/sbin/drbd
(set -e; cd /root/drbd-8.3.2/dist/install//usr/sbin; 
ln -sf crm-fence-peer.sh crm-unfence-peer.sh ;
ln -sf snapshot-resync-target-lvm.sh unsnapshot-resync-target-lvm.sh ;
ln -sf notify.sh notify-split-brain.sh ;
ln -sf notify.sh notify-io-error.sh ;
ln -sf notify.sh notify-pri-on-incon-degr.sh ;
ln -sf notify.sh notify-pri-lost.sh ;
ln -sf notify.sh notify-pri-lost-after-sb.sh ;
ln -sf notify.sh notify-emergency-reboot.sh ;
ln -sf notify.sh notify-emergency-shutdown.sh ;
ln -sf notify.sh notify-out-of-sync.sh ;)
mkdir -p /root/drbd-8.3.2/dist/install//etc/xen/scripts
install -m 755 block-drbd /root/drbd-8.3.2/dist/install//etc/xen/scripts
install -m 644 drbdadm.bash_completion /root/drbd-8.3.2/dist/install//etc/bash_completion.d/drbdadm
install -d /root/drbd-8.3.2/dist/install//usr/bin
# strip .pl on install,
# at some point we might reimplement similar functionality in non-perl
install -m 755 drbd-overview.pl /root/drbd-8.3.2/dist/install//usr/bin/drbd
install -m 755 drbd.sh.rhcs /root/drbd-8.3.2/dist/install//usr/share/cluster/drbd.sh
install -m 644 drbd.metadata.rhcs /root/drbd-8.3.2/dist/install//usr/share/cluster/drbd.metadata

Don't forget to run update-rc.d or chkconfig
disable=disabled; 
  v=$(udevadm version 2>/dev/null) || 
  v=$(rpm -q --qf '%{VERSION}' udev 2>/dev/null) || 
  v=$(dpkg-query -W -f '${Version}' udev 2>/dev/null); 
  v=${v#0}; v=${v%-*}; if [ -n "$DRBD_ENABLE_UDEV" ]; then 
    disable="" ; 
  else case "$v" in 
    "") ::; *[0-9]*) ::; *) 
      if [ "$v" -ge 85 ]; then 
        disable="" ; 
      fi ; ; 
  esac; fi ;
install -m 644 drbd.rules /root/drbd-8.3.2/dist/install//etc/udev/rules.d/65-drbd.rules$disable
make[2]: Entering directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/documentation'
set -e; for f in drbdsetup.8 drbd.conf.5 drbd.8 drbdadm.8 drbdisk.8 drbdmeta.8 ; do s=${f#* }; 
    install -v -D -m 644 $f /root/drbd-8.3.2/dist/install//usr/share/man/man$s/$f ; 
done
install: creating directory `/root/drbd-8.3.2/dist/install//usr/share/man'
install: creating directory `/root/drbd-8.3.2/dist/install//usr/share/man/man8`
`drbdsetup.8' -> `/root/drbd-8.3.2/dist/install//usr/share/man/man8/drbdsetup.8'
`drbd.conf.5' -> `/root/drbd-8.3.2/dist/install//usr/share/man/man5/drbd.conf.5'
`drbd.8' -> `/root/drbd-8.3.2/dist/install//usr/share/man/man8/drbd.8'
`drbdadm.8' -> `/root/drbd-8.3.2/dist/install//usr/share/man/man8/drbdadm.8'
`drbdisk.8' -> `/root/drbd-8.3.2/dist/install//usr/share/man/man8/drbdisk.8'
`drbdmeta.8' -> `/root/drbd-8.3.2/dist/install//usr/share/man/man8/drbdmeta.8'
make[2]: Entering directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/documentation'
make[2]: Leaving directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/documentation'
make[2]: Entering directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd'
install -d /root/drbd-8.3.2/dist/install//lib/modules/2.6.29.6-217.2.16.fc11.x86_64/kernel/drivers/block
install -m 644 drbd.ko /root/drbd-8.3.2/dist/install//lib/modules/2.6.29.6-217.2.16.fc11.x86_64/kernel/drivers/block
make[2]: Leaving directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/drbd'
make[1]: Leaving directory `/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2'
+ cd drbd
+ mv .kernel.config.gz k-config-2.6.29.6-217.2.16.fc11.x86_64.gz
+ FILELIST=/root/drbd-8.3.2/dist/BUILD/drbd-8.3.2/file.list
+ cd /root/drbd-8.3.2/dist/install
+ find etc/ -name drbd -printf '/%p
'
+ test -e sbin/rcdrbd
+ echo /etc/bash_completion.d/drbdadm
+ test -e etc/bash_completion.d/drbdadm
+ test -e ush/cluster/drbd.sh
+ echo /usr/share/cluster/drbd.sh
+ test -e ush/cluster/drbd.metadata
+ echo /usr/share/cluster/drbd.metadata
+ cat
+ /usr/1lib/rpm/brp-compress
+ /usr/1lib/rpm/brp-strip
+ /usr/1lib/rpm/brp-strip-static-archive
+ /usr/1lib/rpm/brp-strip-comment-note
Processing files: drbd-8.3.2-3.x86_64
Executing(%doc): /bin/sh -e /var/tmp/rpm-tmp.ZP27D3
+ umask 022
+ cd /root/drbd-8.3.2/dist/BUILD
+ cd drbd-8.3.2
+ DOCDIR=/root/drbd-8.3.2/dist/install/usr/share/doc/drbd-8.3.2
+ export DOCDIR
+ rm -rf /root/drbd-8.3.2/dist/install/usr/share/doc/drbd-8.3.2
+ /bin/mkdir -p /root/drbd-8.3.2/dist/install/usr/share/doc/drbd-8.3.2
+ cp -p scripts/drbd.conf /root/drbd-8.3.2/dist/install/usr/share/doc/drbd-8.3.2
+ cp -p COPYING /root/drbd-8.3.2/dist/install/usr/share/doc/drbd-8.3.2
+ cp -p README /root/drbd-8.3.2/dist/install/usr/share/doc/drbd-8.3.2
+ cp -p file.list /root/drbd-8.3.2/dist/install/usr/share/doc/drbd-8.3.2
+ exit 0
Provides: config(drbd) = 8.3.2-3
Requires(interp): /bin/sh /bin/sh
Requires(rpmlib): rpmlib(CompressedFileNames) <= 3.0.4-1 rpmlib(PayloadFilesHavePrefix) <= 4.0-1
Requires(post): /bin/sh
Requires(preun): /bin/sh

Cluster from Scratch - DRBD, OCFS2 and Apache on Fedora 11
Requires: /bin/bash /usr/bin/perl libc.so.6(GLIBC_2.2.5)(64bit) libc.so.6(GLIBC_2.2.7)(64bit) perl(strict) perl(warnings) rtld(GNU_HASH)
Processing files: drbd-km-2.6.29.6.217.2.16.fc11.x86_64-8.3.2-3.x86_64
Executing(%doc): /bin/sh -e /var/tmp/rpm-tmp.x2DVwT
+ umask 022
+ cd /root/drbd-8.3.2/dist/BUILD
+ cd drbd-8.3.2
+ DOCDIR=/root/drbd-8.3.2/dist/install/usr/share/doc/drbd-km-2.6.29.6.217.2.16.fc11.x86_64-8.3.2
+ export DOCDIR
+ rm -rf /root/drbd-8.3.2/dist/install/usr/share/doc/drbd-km-2.6.29.6.217.2.16.fc11.x86_64-8.3.2
+ /bin/mkdir -p /root/drbd-8.3.2/dist/install/usr/share/doc/drbd-km-2.6.29.6.217.2.16.fc11.x86_64-8.3.2
+ cp -pr drbd/k-config-2.6.29.6.217.2.16.fc11.x86_64.gz /root/drbd-8.3.2/dist/install/usr/share/doc/drbd-km-2.6.29.6.217.2.16.fc11.x86_64-8.3.2
+ exit 0
Requires(interp): /bin/sh /bin/sh
Requires(rpmlib): rpmlib(CompressedFileNames) <= 3.0.4-1 rpmlib(PayloadFilesHavePrefix) <= 4.0-1
Requires(post): /bin/sh
Requires(postun): /bin/sh
Conflicts: km_drbd drbd-kmp <= 8.3.2-3 drbd-kmod <= 8.3.2-3
Checking for unpackaged file(s): /usr/lib/rpm/check-files /root/drbd-8.3.2/dist/install
Wrote: /root/drbd-8.3.2/dist/RPMS/x86_64/drbd-8.3.2-3.x86_64.rpm
Wrote: /root/drbd-8.3.2/dist/RPMS/x86_64/drbd-km-2.6.29.6.217.2.16.fc11.x86_64-8.3.2-3.x86_64.rpm
Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.clqiey
+ umask 022
+ cd /root/drbd-8.3.2/dist/BUILD
+ cd drbd-8.3.2
+ '[ -n /root/drbd-8.3.2/dist/install -a /root/drbd-8.3.2/dist/install "!=" / ]'
+ rm -rf /root/drbd-8.3.2/dist/install
+ exit 0
You have now:
-rw-r--r-- 1 root root 228953 2009-08-31 13:09 dist/RPMS/x86_64/drbd-8.3.2-3.x86_64.rpm
-rw-r--r-- 1 root root 1145718 2009-08-31 13:09 dist/RPMS/x86_64/drbd-
- km-2.6.29.6.217.2.16.fc11.x86_64-8.3.2-3.x86_64.rpm
[root@test1 drbd-8.3.2]#
Install the DRBD Packages

The completed build process will store the result in the `dist/RPMS/x86_64/` subdirectory and all that is required now is to install them with YUM.

```
yum localinstall -y --nogpgcheck dist/RPMS/x86_64/drbd-*.rpm
```

By default DRBD configures itself to start when the machine is powered on, however since we want the cluster to manage it, we will need to disable this behavior:

```
chkconfig --del drbd
```
We could rebuild the drbd package on test2, however if they share the same architecture (x86_64 in this case) we can reuse the ones we built for test1. Assuming this is the case for you, copy them to test2 and install:

```
scp dist/RPMS/x86_64/drbd-*.rpm test2:
ssh test2 -- yum localinstall -y --nogpgcheck drbd-*.rpm
chkconfig --del drbd
```

```
[root@test1 drbd-8.3.2]# scp dist/RPMS/x86_64/drbd-*.rpm test2:
 drbd-8.3.2-3.x86_64.rpm 100% 216KB 215.8KB/s 00:01
 drbd-km-2.6.29.6_217.2.16.fc11.x86_64-8.3.2-3.x86_64.rpm
 100% 1119KB 1.1MB/s 00:00
[root@test1 drbd-8.3.2]# ssh test2 -- yum localinstall -y --nogpgcheck drbd-*.rpm
Loaded plugins: refresh-packagekit, versionlock
Setting up Local Package Process
Examining drbd-8.3.2-3.x86_64.rpm: drbd-8.3.2-3.x86_64
Marking drbd-8.3.2-3.x86_64.rpm to be installed
Reading version lock configuration
Examining drbd-km-2.6.29.6_217.2.16.fc11.x86_64-8.3.2-3.x86_64.rpm: drbd-
 km-2.6.29.6_217.2.16.fc11.x86_64-8.3.2-3.x86_64
Marking drbd-km-2.6.29.6_217.2.16.fc11.x86_64-8.3.2-3.x86_64.rpm to be installed
Resolving Dependencies
 --> Running transaction check
 --> Finished Dependency Resolution
 Dependencies Resolved
 Package Arch Version Repository Size

 Installing:
 drbd
 x86_64 8.3.2-3 /drbd-8.3.2-3.x86_64
 drbd-km-2.6.29.6_217.2.16.fc11.x86_64
 x86_64 8.3.2-3 /drbd-km-2.6.29.6_217.2.16.fc11.x86_64-8.3.2-3.x86_64 3.7 M
 Transaction Summary
 ==
 Install 2 Package(s)
 Update 0 Package(s)
 Remove 0 Package(s)
 Total size: 4.1 M
 Downloading Packages:
 Running rpm_check_debug
 Running Transaction Test
 Finished Transaction Test
 Transaction Test Succeeded
 Running Transaction
 Installing : drbd-8.3.2-3.x86_64 1/2
 Installing : drbd-km-2.6.29.6_217.2.16.fc11.x86_64-8.3.2-3.x86_64 2/2
```

© Andrew Beekhof 2009
Configure DRBD

Before we configure DRBD, we need to set aside some disk for it to use.

Optional Horrible Hack

By default, Fedora 11 will use all the available hard-disk for the operating system, with the exception of a small swap partition.

If you arrived at this point without any space for a new LVM partition, you can cheat and steal some from the swap device. This is less than an ideal solution, but it is significantly simpler than resizing a live root filesystem.

First we identify the existing swap partition

```
[lv_root vg_test1 -wi-ao 7.30G
 lv_swap vg_test1 -wi-ao 512.00M
```

Then we deactivate it, remove it and recreate a slightly smaller version

```
swapon -a
lvremove -f vg_test1/lv_swap
lvcreate -n lv_swap -L 500m vg_test1
mkswap /dev/mapper/vg_test1-lv_swap
swapon -a
```

Now we have room to create a small (10Mb) partition for DRBD.
Now repeat the process on test2.

```
ls
swapoff -a
lvremove -f vg_test2/lv_swap
lvcreate -n lv_swap -L 500m vg_test2
mkswap /dev/mapper/vg_test2-lv_swap
swapon -a
```

```
[lv]# ls
LV VG Attr LSize Origin Snap% Move Log Copy% Convert
lv_root vg_test2 -wi-ao 7.30G
lv_swap vg_test2 -wi-ao 512.00M
[lv]# swapoff -a
[lv]# lvremove -f vg_test2/lv_swap
Logical volume "lv_swap" successfully removed
[lv]# lvcreate -n lv_swap -L 500m vg_test2
Logical volume "lv_swap" created
[lv]# mkswap /dev/mapper/vg_test2-lv_swap
Setting up swapspace version 1, size = 511996 KiB
no label, UUID=aaddc16a-b307-46b8-9efe-93cd0bbfc08d
[lv]# swapon -a
[lv]# ls
LV VG Attr LSize Origin Snap% Move Log Copy% Convert
lv_root vg_test2 -wi-ao 7.30G
lv_swap vg_test2 -wi-ao 500.00M
```

**Create A Partition for DRBD**

If you have more than 10Mb free, feel free to use it. For this guide however, 10Mb is enough for a single html file.

```
lvcreate -n drbd-demo -L 10m vg_test1
```

```
[lv]# ls
LV VG Attr LSize Origin Snap% Move Log Copy% Convert
drbd-demo vg_test1 -wi-a- 12.00M
lv_root vg_test1 -wi-ao 7.30G
lv_swap vg_test1 -wi-ao 500.00M
```

Repeat this on the second node, be sure to use the same size partition.

```
lvcreate -n drbd-demo -L 10m vg_test2
```

```
[lv]# ls
LV VG Attr LSize Origin Snap% Move Log Copy% Convert
lv_root vg_test2 -wi-ao 7.30G
lv_swap vg_test2 -wi-ao 500.00M
```

© Andrew Beekhof 2009

Cluster from Scratch - DRBD, OCFS2 and Apache on Fedora 11
Logical volume "drbd-demo" created

```
[root@test2 ~]# lvs
LV VG Attr LSize Origin Snap% Move Log Copy% Convert
 drbd-demo vg_test2 -wi-a- 12.00M
 lv_root vg_test2 -wi-a0 7.30G
 lv_swap vg_test2 -wi-a0 500.00M
```

**Write the DRBD Config**

There is no series of commands for build a DRBD configuration, so simply copy the configuration below to `/etc/drbd.conf`

Detailed information on the directives used in this configuration (and other alternatives) is available from [http://www.drbd.org/users-guide/ch-configure.html](http://www.drbd.org/users-guide/ch-configure.html)

Be sure to use the names and addresses of your nodes if they differ from the ones used in this guide.

```plaintext
global {
 usage-count yes;
}
common {
 protocol C;
}
resource wwwdata {
 meta-disk internal;
 device /dev/drbd1;
 syncer {
 verify-alg sha1;
 }
 net {
 allow-two-primaries;
 }
 on test1 {
 disk /dev/mapper/vg_test1-drbd--demo;
 address 192.168.19.41:7789;
 }
 on test2 {
 disk /dev/mapper/vg_test2-drbd--demo;
 address 192.168.19.42:7789;
 }
}
```
Initialize and Load DRBD

With the configuration in place, we can now perform the DRBD initialization:

```
drbdadm create-md wwwdata
```

```
md_offset 12578816
al_offset 12546048
bm_offset 12541952

Found some data
 ==> This might destroy existing data! <==

Do you want to proceed?
[need to type 'yes' to confirm] yes

Writing meta data...
initializing activity log
NOT initialized bitmap
New drbd meta data block successfully created.
success
```

Now load the DRBD kernel module and confirm that everything is sane:

```
modprobe drbd
drbdadm up wwwdata
cat /proc/drbd
```

```
version: 8.3.2 (api:88/proto:86-90)
GIT-hash: dd7985327f146f33b86d4b5f5ca8c94234ce840e build by root@test1.clusterlabs.org, 2009-08-31 13:09:34

1: cs:WFConnection ro:Secondary/Unknown ds:Inconsistent/Unknown C r----
 ns:0 nr:0 dw:0 dr:0 al:0 bm:0 lo:0 pe:0 ua:0 ap:0 ep:1 wo:b oos:12248
```

© Andrew Beekhof 2009
Repeat on the second node

```
drbdadm --force create-md wwwdata
modprobe drbd
drbdadm up wwwdata
cat /proc/drbd
```

```
[root@test2 ~]# drbdadm --force create-md wwwdata
Writing meta data...
initializing activity log
NOT initialized bitmap
New drbd meta data block successfully created.
success
[root@test2 ~]# modprobe drbd
WARNING: Deprecated config file /etc/modprobe.conf, all config files belong into /etc/modprobe.d/.
[root@test2 ~]# drbdadm up wwwdata
[root@test2 ~]# cat /proc/drbd
version: 8.3.2 (api:88/proto:86-90)
GIT-hash: dd7985327f146f33b86d4bfff5ca8c94234ce840e build by root@test1.clusterlabs.org, 2009-08-31 13:09:34

1: cs:Connected ro:Secondary/Secondary ds:Inconsistent/Inconsistent C r----
 ns:0 nr:0 dw:0 dr:0 al:0 bm:0 lo:0 pe:0 ua:0 ep:1 wo:b oos:12248
```

Now we need to tell DRBD which set of data to use. Since both sides contain garbage, we can run the following on test1:

```
drbdadm -- --overwrite-data-of-peer primary wwwdata
cat /proc/drbd
```

```
[root@test1 ~]# drbdadm -- --overwrite-data-of-peer primary wwwdata
[root@test1 ~]# cat /proc/drbd
version: 8.3.2 (api:88/proto:86-90)
GIT-hash: dd7985327f146f33b86d4bfff5ca8c94234ce840e build by root@test1.clusterlabs.org, 2009-08-31 13:09:34

1: cs:Connected ro:Primary/Secondary ds:UpToDate/Inconsistent C r----
 ns:2184 nr:0 dw:0 dr:2472 al:0 bm:0 lo:0 pe:0 ua:0 ap:0 ep:1 wo:b oos:10064
 [====] sync'ed: 33.4% (10064/12248)K
 finish: 0:00:37 speed: 240 (240) K/sec
[root@test1 ~]# cat /proc/drbd
version: 8.3.2 (api:88/proto:86-90)
GIT-hash: dd7985327f146f33b86d4bfff5ca8c94234ce840e build by root@test1.clusterlabs.org, 2009-08-31 13:09:34

1: cs:Connected ro:Primary/Secondary ds:UpToDate/UpToDate C r----
 ns:12248 nr:0 dw:0 dr:12536 al:0 bm:1 lo:0 pe:0 ua:0 ap:0 ep:1 wo:b oos:0
```

test1 is now in the Primary state which allows it to be written to. Which means its a good point at which to create a filesystem and populate it with some data to serve up via our WebSite resource.
Populate DRBD with Data

```bash
mkfs.ext4 /dev/drbd1
```

```bash
[root@test1 ~]# mkfs.ext4 /dev/drbd1
mke2fs 1.41.4 (27-Jan-2009)
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
3072 inodes, 12248 blocks
612 blocks (5.00%) reserved for the super user
First data block=1
Maximum filesystem blocks=12582912
2 block groups
8192 blocks per group, 8192 fragments per group
1536 inodes per group
Superblock backups stored on blocks:
 8 1 9 3
Writing inode tables: done
Creating journal (1024 blocks): done
Writing superblocks and filesystem accounting information: done
This filesystem will be automatically checked every 26 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
```

Now mount the newly created filesystem so we can create our index file

```bash
mount /dev/drbd1 /mnt/
cat <<END >/mnt/index.html
<html>
<body>My Test Site - drbd</body>
</html>
END

umount /dev/drbd1
```

And finally, confirm the data is in sync between the two nodes

```bash
drbdadm verify wwwdata
echo $?
```

```bash
[root@test1 ~]# drbdadm verify wwwdata
[root@test1 ~]# echo $?
0
```
Configure the Cluster for DRBD

One handy feature of the crm shell is that you can use it in interactive mode to make several changes atomically.

First we launch the shell. The prompt will change to indicate you're in interactive mode.

    crm

[root@test1 ~]# crm
cib crm(live)#

Next we must create a working copy or the current configuration. This is where all our changes will go. The cluster will not see any of them until we say its ok. Notice again how the prompt changes, this time to indicate that we're no longer looking at the live cluster.

    cib new drbd

cib crm(live)# cib new drbd
INFO: drbd shadow CIB created
crm(drbd)#

Now we can create our DRBD clone and display the revised configuration.

    configure primitive wwwdrbd ocf:linbit:drbd params drbd_resource=wwwdata op monitor interval=60s
    configure ms WebData wwwdrbd meta master-max=1 master-node-max=1 \
        clone-max=2 clone-node-max=1 notify=true

    configure show

crm(drbd)# configure primitive ocf:linbit:drbd WebData params drbd_resource=wwwdata op monitor interval=60s
    configure ms WebDataClone WebData meta master-max=1 master-node-max=1 \
        clone-max=2 clone-node-max=1 notify=true
crm(drbd)# configure show
node test1
node test2
primitive WebDataClone ocf:linbit:drbd \
    meta master-max="1" clone-max="2" clone-node-max="1" notify="true"
primitive WebSite ocf:heartbeat:apache \
    params configfile="/etc/httpd/conf/httpd.conf" \
    op monitor interval="1min"
primitive ClusterIP ocf:heartbeat:IPaddr2 \
    params ip="192.168.9.101" cidr_netmask="32" \
    op monitor interval="30s"
ms WebDataClone WebData \
    meta master-max="1" clone-max="2" clone-node-max="1" notify="true"
    location prefer-test1 WebSite 50: test1
    colocation website-with-ip inf: WebSite ClusterIP
    order apache-after-ip inf: ClusterIP WebSite
property $id="cib-bootstrap-options" \
    dc-version="1.0.5-462f1569a43740667da7b0f8521742e9eb8fa7" \
    cluster-infrastructure="openais" \
    expected-quorum-votes="2" \
    stonith-enabled="false" \
    no-quorum-policy="ignore"
rsc_defaults $id="rsc-options" \
    resource-stickiness="100"
Once we’re happy with the changes, we can tell the cluster to start using them and use `crm_mon` to check everything is functioning.

```
cib commit drbd
quit

```

```bash
[interactive]
crm_mon
```

```
crm(drbd)# cib commit drbd
INFO: commited 'drbd' shadow CIB to the cluster
crm(drbd)# quit
bye
```

```
[root@test1 ~]# crm_mon
```

```
=============
Last updated: Tue Sep 1 09:37:13 2009
Stack: openais
Current DC: test1 - partition with quorum
Version: 1.0.5-462f1569a4374667daa7b0f6b52174e9eb8fa7
2 Nodes configured, 2 expected votes
3 Resources configured.
=============
Online: [test1 test2]
```

```
ClusterIP (ocf::heartbeat:IPaddr): Started test1
WebSite (ocf::heartbeat:apache): Started test1
Master/Slave Set: WebDataClone
 Masters: [test2]
 Slaves: [test1]
```

Now that DRBD is functioning we can configure a Filesystem resource to use it. In addition to the filesystem's definition, we also need to tell the cluster where it can be located (only on the DRBD Primary) and when it is allowed to start (after the Primary was promoted).

Once again we’ll use the shell's interactive mode

```
crm
cib new fs
configure primitive WebFS ocf:heartbeat:Filesystem \
 params device="/dev/dev/mapper/vg_test1-drbd--demo" directory="/var/www/html"
 fstype="ext4"
configure colocation fs_on_drbd inf: WebFS WebDataClone:Master
configure order WebFS-after-WebData inf: WebDataClone:promote WebFS:start
```

```
[root@test1 ~]# crm
crm(live)# cib new fs
INFO: fs shadow CIB created
crm(fs)# configure primitive WebFS ocf:heartbeat:Filesystem params device="/dev/dev/mapper/vg_test1-drbd--demo" directory="/var/www/html" fstype="ext4"
crm(fs)# configure colocation fs_on_drbd inf: WebFS WebDataClone:Master
crm(fs)# configure order WebFS-after-WebData inf: WebDataClone:promote WebFS:start
```
We also need to tell the cluster that Apache needs to run on the same machine as the filesystem and that it must be active before Apache can start.

```bash
configure colocation WebSite-with-WebFS inf: WebSite WebFS
configure order WebSite-after-WebFS inf: WebFS WebSite
configure show

crm(fs)# configure colocation WebSite-with-WebFS inf: WebSite WebFS
crm(fs)# configure order WebSite-after-WebFS inf: WebFS WebSite
[root@test1 ~]# crm configure show
node test1
node test2
primitive WebData ocf:linbit:drbd
 params drbd_resource="wwwdata"
 op monitor interval="60s"
primitive WebFS ocf:heartbeat:Filesystem
 params device="/dev/drbd/by-res/wwwdata" directory="/var/www/html" fstype="ext4"
primitive WebSite ocf:heartbeat:apache
 params configfile="/etc/httpd/conf/httpd.conf"
 op monitor interval="1min"
primitive ClusterIP ocf:heartbeat:IPaddr2
 params ip="192.168.9.101" cidr_netmask="32"
 op monitor interval="30s"
ms WebDataClone WebData
 meta master-max="1" master-node-max="1" clone-max="2" clone-node-max="1" notify="true"
location prefer-test1 WebSite 50: test1
colocation WebSite-with-WebFS inf: WebSite WebFS
colocation fs_on_drbd inf: WebFS WebDataClone:Master
colocation website-with-ip inf: WebSite ClusterIP
order WebFS-after-WebData inf: WebDataClone:promote WebFS:start
order WebSite-after-WebFS inf: WebFS WebSite
order apache-after-ip inf: ClusterIP WebSite
property $id="cib-bootstrap-options"
 dc-version="1.0.5-462f1569a43740667daf7b8f6b521742e9eb8fa7"
 cluster-infrastructure="openais"
 expected-quorum-votes="2"
 stonith-enabled="false"
 no-quorum-policy="ignore"
rsdefaults $id="rs-cib-options"
 resource-stickiness="100"
```
After reviewing the new configuration, we again upload it and watch the cluster put it into effect.

cib commit fs
quit

crm_mon

---
Last updated: Tue Sep 1 10:08:44 2009
Stack: openais
Current DC: test1 - partition with quorum
Version: 1.0.5-462f1569a43740667daf7b0f6b521742e9eb8fa7
2 Nodes configured, 2 expected votes
4 Resources configured.
---

Online: [test1 test2]

ClusterIP (ocf::heartbeat:IPaddr): Started test1
WebSite (ocf::heartbeat:apache): Started test1
Master/Slave Set: WebDataClone
  Masters: [test1]
  Slaves: [test2]
WebFS (ocf::heartbeat:Filesystem): Started test1
**Testing Migration**

We could shut down the active node again, but another way to safely simulate recovery is to put the node into what is called “standby mode”. Nodes in this state tell the cluster that they are not allowed to run resources. Any resources found active there will be moved elsewhere. This feature can be particularly useful when updating the resources’ packages.

Put the local node into standby mode and observe the cluster move all the resources to the other node. Note also that the node’s status will change to indicate that it can no longer host resources.

```bash
crm node standby
crm_mon
```

```
[root@test1 ~]# crm node standby
[root@test1 ~]# crm_mon
============
Last updated: Tue Sep 1 10:09:57 2009
Stack: openais
Current DC: test1 - partition with quorum
Version: 1.0.5-462f1569a43740667daf7b8f6b521742e9eb8fa7
2 Nodes configured, 2 expected votes
4 Resources configured.
============
Node test1: standby
Online: [test2]
ClusterIP (ocf::heartbeat:IPaddr): Started test2
WebSite (ocf::heartbeat:apache): Started test2
Master/Slave Set: WebDataClone
 Masters: [test2]
 Stopped: [WebData:1]
WebFS (ocf::heartbeat:Filesystem): Started test2
```
Once we’ve done everything we needed to on test1 (in this case nothing, we just wanted to see the resources move), we can allow the node to be a full cluster member again.

```
crm node online
```

```
crm_mon
```

```
[root@test1 ~]# crm node online
[root@test1 ~]# crm_mon
============
Last updated: Tue Sep 1 10:13:25 2009
Stack: openais
Current DC: test1 - partition with quorum
Version: 1.0.5-462f1569a43740667daaf7b0f6b521742e9eb8fa7
2 Nodes configured, 2 expected votes
4 Resources configured.
============
Online: [test1 test2]
ClusterIP (ocf::heartbeat:IPaddr): Started test2
WebSite (ocf::heartbeat:apache): Started test2
Master/Slave Set: WebDataClone
 Masters: [test2]
 Slaves: [test1]
WebFS (ocf::heartbeat:Filesystem): Started test2
```

Notice that our resource stickiness settings prevent the services from migrating back to test1.
Conversion to Active/Active

The primary requirement for an Active/Active cluster is that the data required for your services are available, simultaneously, on both machines. Pacemaker makes no requirement on how this is achieved, you could use a SAN if you had one available, however since DRBD supports multiple Primaries, we can also use that.

The only hitch is that we need to use a cluster-aware filesystem (and the one we used earlier with DRBD, ext4, is not one of those). GFS2 support is planed for later this year, however the best option currently is OCFS2. It comes with Fedora 11 and supports

- Variable Block sizes
- Flexible Allocations (extents, sparse, unwritten extents with the ability to punch holes)
- Journaling (ordered and writeback data journaling modes)
- Endian and Architecture Neutral (x86, x86_64, ia64 and ppc64)
- Support for Buffered, Direct, Asynchronous, Splice and Memory Mapped I/Os
- POSIX locks

Install a Cluster Filesystem - OCFS2

The first thing to do is install ocfs2-tools on each machine. Be sure to obtain the version from the same location as Pacemaker. This version is slightly newer and has improved Pacemaker support.

```bash
[root@test1 ~]# yum install -y ocfs2-tools
Loaded plugins: refresh-packagekit, versionlock
Reading version lock configuration
Setting up Install Process
Resolving Dependencies
---> Running transaction check
---> Package ocfs2-tools.x86_64 0:1.4.1-41.1 set to be updated
---> Processing Dependency: libdlm for package: ocfs2-tools-1.4.1-41.1.x86_64
---> Processing Dependency: libdlmcontrol.so.3()(64bit) for package: ocfs2-tools-1.4.1-41.1.x86_64
---> Running transaction check
---> Package libdlm.x86_64 0:2.99.08-15.1 set to be updated
---> Package libdlm2.x86_64 0:2.99.08-15.1 set to be updated
---> Finished Dependency Resolution

Dependencies Resolved

===
Package Arch Version Repository Size
===
Installing:
ocfs2-tools x86_64 1.4.1-41.1 server_ha-clustering 832 k
Installing for dependencies:

[root@test1 ~]# yum install -y ocfs2-tools
Loaded plugins: refresh-packagekit, versionlock
Reading version lock configuration
Setting up Install Process
Resolving Dependencies
---> Running transaction check
---> Package ocfs2-tools.x86_64 0:1.4.1-41.1 set to be updated
---> Processing Dependency: libdlm for package: ocfs2-tools-1.4.1-41.1.x86_64
---> Processing Dependency: libdlmcontrol.so.3()(64bit) for package: ocfs2-tools-1.4.1-41.1.x86_64
---> Running transaction check
---> Package libdlm.x86_64 0:2.99.08-15.1 set to be updated
---> Package libdlm2.x86_64 0:2.99.08-15.1 set to be updated
---> Finished Dependency Resolution

Dependencies Resolved

===
Package Arch Version Repository Size
===
Installing:
ocfs2-tools x86_64 1.4.1-41.1 server_ha-clustering 832 k
Installing for dependencies:

[root@test1 ~]# yum install -y ocfs2-tools
Loaded plugins: refresh-packagekit, versionlock
Reading version lock configuration
Setting up Install Process
Resolving Dependencies
---> Running transaction check
---> Package ocfs2-tools.x86_64 0:1.4.1-41.1 set to be updated
---> Processing Dependency: libdlm for package: ocfs2-tools-1.4.1-41.1.x86_64
---> Processing Dependency: libdlmcontrol.so.3()(64bit) for package: ocfs2-tools-1.4.1-41.1.x86_64
---> Running transaction check
---> Package libdlm.x86_64 0:2.99.08-15.1 set to be updated
---> Package libdlm2.x86_64 0:2.99.08-15.1 set to be updated
---> Finished Dependency Resolution

Dependencies Resolved

===
Package Arch Version Repository Size
===
Installing:
ocfs2-tools x86_64 1.4.1-41.1 server_ha-clustering 832 k
Installing for dependencies:

[root@test1 ~]# yum install -y ocfs2-tools
Loaded plugins: refresh-packagekit, versionlock
Reading version lock configuration
Setting up Install Process
Resolving Dependencies
---> Running transaction check
---> Package ocfs2-tools.x86_64 0:1.4.1-41.1 set to be updated
---> Processing Dependency: libdlm for package: ocfs2-tools-1.4.1-41.1.x86_64
---> Processing Dependency: libdlmcontrol.so.3()(64bit) for package: ocfs2-tools-1.4.1-41.1.x86_64
---> Running transaction check
---> Package libdlm.x86_64 0:2.99.08-15.1 set to be updated
---> Package libdlm2.x86_64 0:2.99.08-15.1 set to be updated
---> Finished Dependency Resolution

Dependencies Resolved

===
Package Arch Version Repository Size
===
Installing:
ocfs2-tools x86_64 1.4.1-41.1 server_ha-clustering 832 k
Installing for dependencies:
libdlm x86_64 2.99.08-15.1 server_ha-clustering 107 k
libdlm2 x86_64 2.99.08-15.1 server_ha-clustering 55 k

Transaction Summary
==
Install 3 Package(s)
Update 0 Package(s)
Remove 0 Package(s)

Total download size: 993 k
Downloading Packages:
(1/3): libdlm-2.99.08-15.1.x86_64.rpm | 107 kB 00:00
(2/3): libdlm2-2.99.08-15.1.x86_64.rpm | 55 kB 00:00
(3/3): ocfs2-tools-1.4.1-41.1.x86_64.rpm | 832 kB 00:00
==
Total 39 kB/s | 993 kB 00:25
Running rpm_check_debug
Running Transaction Test
Finished Transaction Test
Transaction Test Succeeded
Running Transaction
 Installing: libdlm2-2.99.08-15.1.x86_64 1/3
 Installing: libdlm-2.99.08-15.1.x86_64 2/3
 Installing: ocfs2-tools-1.4.1-41.1.x86_64 3/3

Installed:
 ocfs2-tools.x86_64 0:1.4.1-41.1

Dependency Installed:
 libdlm.x86_64 0:2.99.08-15.1 libdlm2.x86_64 0:2.99.08-15.1

Complete!
Setup Pacemaker-OCFS2 Integration

OCFS2 needs two services to be running, the first is the user-space interface to the kernel’s distributed lock manager (DLM). The DLM is used to co-ordinate which node(s) can access a given file (and when) and integrates with Pacemaker to obtain node membership10 information and fencing capabilities.

The second service is OCFS2’s own control daemon which also integrates with Pacemaker to obtain node membership data.

Add the DLM service

The DLM control daemon needs to run on all active cluster nodes, so we will use the shell's interactive mode to create a cloned resource.

```
crm

cib new stack-glue

configure primitive dlm ocf:pacemaker:controld op monitor interval=120s

configure clone dlm-clone dlm meta interleave=true

configure show
```

```
[root@test1 ~]$ crm

crm(live)# cib new stack-glue

INFO: stack-glue shadow CIB created

crm(stack-glue)# configure primitive dlm ocf:pacemaker:controld op monitor interval=120s

crm(stack-glue)# configure clone dlm-clone dlm meta interleave=true

crm(stack-glue)# configure show xml

crm(stack-glue)# configure show

node test1

node test2

primitive WebData ocf:linbit:drbd 
    params drbd_resource="wwwdata" 
    op monitor interval="60s"

primitive WebFS ocf:heartbeat:Filesystem 
    params device="/dev/drbd/by-res/wwwdata" directory="/var/www/html" fstype="ext4"

primitive WebSite ocf:heartbeat:apache 
    params configFile="/etc/httpd/conf/httpd.conf" 
    op monitor interval="1min"

primitive ClusterIP ocf:heartbeat:IPaddr2 
    params ip="192.168.9.101" cidr_netmask="32" 
    op monitor interval="30s"

primitive dlm ocf:pacemaker:controld 
    op monitor interval="120s"

ms WebDataClone WebData 
    meta master-max="1" master-node-max="1" clone-max="2" clone-node-max="1" notify="true"

close dlm-clone dlm 
    meta interleave="true"

location prefer-test1 WebSite 50: test1

colocation WebSite-with-WebFS inf: WebSite WebFS

colocation fs_on_drbd inf: WebFS WebDataClone:Master

colocation website-with-ip inf: WebSite ClusterIP

order WebFS-after-WebData inf: WebDataClone:promote WebFS:start

order WebSite-after-WebFS inf: WebFS WebSite

order apache-after-ip inf: ClusterIP WebSite

property $id="cib-bootstrap-options" 
    dc-version="1.0.5-462f1569a43740667daf7b0f6b521742e9eb8fa7"
```

10 The list of nodes the cluster considers to be available
Add the O2CB service

Once the DLM is active, we can add the OCFS2 control daemon.

Before we do so, check to see that the o2cb service is not being automatically started when the machine boots. This service is only used when OCFS2 uses its internal cluster stack. Neither it, nor the cluster.conf it creates should be used when using OCFS2 with Pacemaker.

To see if a node will start o2cb automatically, run

```bash
chkconfig | grep o2cb
```

There should be no output.

There are currently a few minor issues with the o2cb script that need to be addressed before we use it. To make the script compatible with Fedora 11, run the following commands (there should be no output).

```bash
sed -i.gres s/start_daemon//g /usr/lib/ocf/resource.d/ocfs2/o2cb
sed -i.gres s/pidofproc/pidof/g /usr/lib/ocf/resource.d/ocfs2/o2cb
```
Now use the `crm` shell to create the o2cb cluster resource:

```bash
crm
cib new oracle-glue
configure primitive o2cb ocf:ocfs2:o2cb op monitor interval=120s
configure clone o2cb-clone o2cb meta interleave=true
```

Now ensure Pacemaker only starts the o2cb service on nodes that also have a copy of the dlm service (created above) already running.

```bash
configure colocation o2cb-with-dlm INFINITY: o2cb-clone dlm-clone
configure order start-o2cb-after-dlm mandatory: dlm-clone o2cb-clone
```

Review the configuration before uploading it to the cluster, quitting the shell and watching the cluster's response.

```bash
configure show
cib commit oracle-glue
quit
```
colocation WebSite-with-WebFS inf: WebSite WebFS

colocation fs_on_drbd inf: WebFS WebDataClone:Master

colocation o2cb-with-dlm inf: o2cb-clone dlm-clone

order WebFS-after-WebData inf: WebDataClone:promote WebFS:start

order WebSite-after-WebFS inf: WebFS WebSite

order apache-after-ip inf: ClusterIP WebSite

order start-o2cb-after-dlm inf: dlm-clone o2cb-clone

property $id="cib-bootstrap-options" \
 dc-version="1.0.5-462f1569a43740667daf7b0f6b521742e9eb8fa7" \
 cluster-infrastructure="openais" \
 expected-quorum-votes="2" \
 stonith-enabled="false" \
 no-quorum-policy="ignore"

rsc_defaults $id="rsc-options" \
 resource-stickiness="100"

crm(oracle-glue)# cib commit oracle-glue
INFO: commited 'oracle-glue' shadow CIB to the cluster
crm(oracle-glue)# quit
bye

[root@test1 ~]# crm_mon
============
Last updated: Thu Sep 3 20:49:54 2009
Stack: openais
Current DC: test2 - partition with quorum
Version: 1.0.5-462f1569a43740667daf7b0f6b521742e9eb8fa7
2 Nodes configured, 2 expected votes
6 Resources configured.
============

Online: [test1 test2]

WebSite (ocf::heartbeat:apache): Started test2
Master/Slave Set: WebDataClone
 Masters: [test1]
 Slaves: [test2]

ClusterIP (ocf::heartbeat:IPaddr): Started test2
Clone Set: dlm-clone
 Started: [test2 test1]

Clone Set: o2cb-clone
 Started: [test2 test1]

WebFS (ocf::heartbeat:Filesystem): Started test1
Create an OCFS2 Filesystem

Preparation

Before we do anything to the existing partition, we need to make sure it is unmounted. We do this by tell the cluster to stop the WebFS resource. This will ensure that other resources (in our case, Apache) using WebFS are not only stopped, but stopped in the correct order.

```
crm_resource --resource WebFS --set-parameter target-role --meta --parameter-value Stopped
```

```
[root@test1 ~]# crm_resource --resource WebFS --set-parameter target-role --meta --parameter-value Stopped
[root@test1 ~]# crm_mon
```

```
============
Last updated: Thu Sep  3 15:18:06 2009
Stack: openais
Current DC: test1 - partition with quorum
Version: 1.0.5-462f1569a43740667daf7b8f6b521742e9eb8fa7
2 Nodes configured, 2 expected votes
6 Resources configured.
============

Online: [ test1 test2 ]

Master/Slave Set: WebDataClone
  Masters: [ test1 ]
  Slaves: [ test2 ]
ClusterIP (ocf::heartbeat:IPaddr): Started test1
Clone Set: dlm-clone
  Started: [ test2 test1 ]
Clone Set: o2cb-clone
  Started: [ test2 test1 ]
```

Note that Apache and WebFS have both been stopped.
Create and Populate an OCFS2 Partition

Now that the cluster stack and integration pieces are running smoothly, we can create an OCFS2 partition.

Important: This will erase all previous content stored on the DRBD device. Ensure you have a copy of any important data.

The OCFS2 defaults are pretty good, so simply point mkfs to the DRBD partition we’re going to use.

```
mkfs.ocfs2 /dev/drbd1
```

```
[root@test1 ~]# mkfs.ocfs2 /dev/drbd1
mkfs.ocfs2 1.4.2
Cluster stack: pcmk
Cluster name: pacemaker
NOTE: Selecting extended slot map for userspace cluster stack
Filesystem label=
Block size=1024 (bits=10)
Cluster size=4096 (bits=12)
Volume size=12541952 (3062 clusters) (12248 blocks)
1 cluster groups (tail covers 3062 clusters, rest cover 3062 clusters)
Journal size=4194304
Initial number of node slots: 2
Creating bitmaps: done
Initializing superblock: done
Writing system files: done
Writing superblock: done
Writing backup superblock: 0 block(s)
Formatting Journals: done
Formatting slot map: done
Writing lost+found: done
Formatting quota files: done
mkfs.ocfs2 successful
```

Then (re)populate the new filesystem with data (web pages). For now we’ll create another variation on our home page.

```
mount /dev/drbd1 /mnt/
cat <<-END >/mnt/index.html
<html>
<body>My Test Site - OCFS2</body>
</html>
END
umount /dev/drbd1
drbdadm verify wwwdata
```

```
[root@test1 ~]# cat <<-END >/mnt/index.html
> <html>
> <body>My Test Site - drbd</body>
> </html>
> END
[root@test1 ~]#
```
Reconfigure the Cluster for OCFS2

```bash
crm

cib new ocfs2

configure delete WebFS

configure primitive WebFS ocf:heartbeat:Filesystem \  
  params device="/dev/drbd/by-res/wwwdata" directory="/var/www/html" fstype="ocfs2"
```

```
[root@test1 ~]# crm
crm(live)# cib new ocfs2
INFO: ocfs2 shadow CIB created

crm(ocfs2)# configure delete WebFS

crm(ocfs2)# configure primitive WebFS ocf:heartbeat:Filesystem params device="/dev/drbd/by-res/wwwdata" directory="/var/www/html" fstype="ocfs2"
```

Now that we’ve recreated the resource, we also need to recreate all the constraints that used it. This is because the shell will automatically remove any constraints that referenced WebFS.

```bash
configure colocation WebSite-with-WebFS inf: WebSite WebFS

configure colocation fs_on_drbd inf: WebFS WebDataClone:Master

configure order WebFS-after-WebData inf: WebDataClone:promote WebFS:start

configure order WebSite-after-WebFS inf: WebFS WebSite

configure colocation WebFS-with-o2cb INFINITY: WebFS o2cb-clone

configure order start-WebFS-after-o2cb mandatory: o2cb-clone WebFS
```

```bash
configure show

crm(ocfs2)# configure colocation WebSite-with-WebFS inf: WebSite WebFS

crm(ocfs2)# configure colocation fs_on_drbd inf: WebFS WebDataClone:Master

crm(ocfs2)# configure order WebFS-after-WebData inf: WebDataClone:promote WebFS:start

crm(ocfs2)# configure order WebSite-after-WebFS inf: WebFS WebSite

crm(ocfs2)# configure colocation WebFS-with-o2cb INFINITY: WebFS o2cb-clone

crm(ocfs2)# configure order start-WebFS-after-o2cb mandatory: o2cb-clone WebFS

crm(ocfs2)# configure show
```

```bash
node test1

node test2

primitive WebData ocf:linbit:drbd
  params drbd_resource="wwwdata"
  op monitor interval="60s"

primitive WebFS ocf:heartbeat:Filesystem
  params device="/dev/drbd/by-res/wwwdata" directory="/var/www/html" fstype="ocfs2"

primitive WebSite ocf:heartbeat:apache
  params configfile="/etc/httpd/conf/httpd.conf"
  op monitor interval="1min"

primitive ClusterIP ocf:heartbeat:IPaddr2
  params ip="192.168.9.101" cidr_netmask="32"
  op monitor interval="30s"

primitive dlm ocf:pacemaker:controld
  op monitor interval="120s"

primitive o2cb ocf:ocfs2:o2cb
  op monitor interval="120s"

ms WebDataClone WebData
  meta master-max="1" master-node-max="1" clone-max="2" clone-node-max="1" notify="true"
```
clone dlm-clone dlm
 meta interleave="true"
clone o2cb-clone o2cb
 meta interleave="true"
colocation WebFS-with-o2cb inf: WebFS o2cb-clone
colocation WebSite-with-WebFS inf: WebSite WebFS
colocation fs_on_drbd inf: WebFS WebDataClone:Master
colocation o2cb-with-dlm inf: o2cb-clone dlm-clone
colocation website-with-ip inf: WebSite ClusterIP
order WebFS-after-WebData inf: WebDataClone:promote WebFS:start
order WebSite-after-WebFS inf: WebFS WebSite
order apache-after-ip inf: ClusterIP WebSite
order start-WebFS-after-o2cb inf: o2cb-clone WebFS
order start-o2cb-after-dlm inf: dlm-clone o2cb-clone
property $id="cib-bootstrap-options"
 dc-version="1.0.5-462f1569a43740667daf7b0f6b521742e9eb8fa7"
 cluster-infrastructure="openais"
 expected-quorum-votes="2"
 stonith-enabled="false"
 no-quorum-policy="ignore"
rsc_defaults $id="rsc-options"
 resource-stickiness="100"

Review the configuration before uploading it to the cluster, quitting the shell and watching the cluster's response.

cib commit ocfs2
quit
crm_mon

crm(ocfs2)# cib commit ocfs2
INFO: committed 'ocfs2' shadow CIB to the cluster

crm(ocfs2)# quit
bye
[root@test1 ~]# crm_mon

Last updated: Thu Sep 3 20:49:54 2009
Stack: openais
Current DC: test2 - partition with quorum
Version: 1.0.5-462f1569a43740667daf7b0f6b521742e9eb8fa7
2 Nodes configured, 2 expected votes
6 Resources configured.

Online: [test1 test2]

WebSite (ocf::heartbeat:apache): Started test2
Master/Slave Set: WebDataClone
 Masters: [test1]
 Slaves: [test2]
ClusterIP (ocf::heartbeat:IPaddr): Started test2
Clone Set: dlm-clone
 Started: [test2 test1]
Clone Set: o2cb-clone
 Started: [test2 test1]
WebFS (ocf::heartbeat:Filesystem): Started test1
Reconfigure Pacemaker for Active/Active

Almost everything is in place. Recent versions of DRBD are capable of operating in Primary/Primary mode and the filesystem we’re using is cluster aware. All we need to do now is reconfigure the cluster to take advantage of this.

This will involve a number of changes, so we’ll again use interactive mode.

```bash
crm
cib new active
```

There’s no point making the services active on both locations if we can’t reach them, so let’s first clone the IP address. Cloned IPAddr2 resources use an `iptables` rule to ensure that each request only processed by one of the two clone instances. The additional `meta` options tell the cluster how many instances of the clone we want (one “request bucket” for each node) and that if all other nodes fail, then the remaining node should hold all of them. Otherwise the requests would be simply discarded.

```bash
configure clone WebIP ClusterIP \    
   meta globally-unique="true" clone-max="2" clone-node-max="2"
```

```bash
[root@test1 ~]# crm
crm(live)# cib new active
INFO: active shadow CIB created
```

```bash
crm(active)# configure clone WebIP ClusterIP \    
   meta globally-unique="true" clone-max="2" clone-node-max="2"
```

```bash
crm(active)# configure show
node test1
node test2
primitive WebData ocf:linbit:drbd \    
   params drbd_resource="wwwdata" \    
   op monitor interval="60s"
primitive WebFS ocf:heartbeat:Filesystem \    
   params device="/dev/drbd/by-res/wwwdata" directory="/var/www/html" fstype="ocfs2"
primitive WebSite ocf:heartbeat:apache \    
   params configfile="/etc/httpd/conf/httpd.conf" \    
   op monitor interval="1min"
primitive ClusterIP ocf:heartbeat:IPaddr2 \    
   params ip="192.168.9.101" cidr_netmask="32" \    
   op monitor interval="30s"
primitive dlm ocf:pacemaker:controld \    
   op monitor interval="120s"
primitive o2cb ocf:ocfs2:o2cb \    
   op monitor interval="120s"
ms WebDataClone WebData \    
   meta master-max="1" master-node-max="1" clone-max="2" clone-node-max="1" notify="true"
clone WebIP ClusterIP \    
   meta globally-unique="true" clone-max="2" clone-node-max="2"
clone dlm-clone dlm \    
   meta interleave="true"
clone o2cb-clone o2cb \    
   meta interleave="true"
```

```bash
colocation WebFS-with-o2cb inf: WebFS o2cb-clone
```

```bash
colocation WebSite-with-WebFS inf: WebSite WebFS
```

```bash
colocation fs_on_drbd inf: WebFS WebDataClone:Master
```

© Andrew Beekhof 2009

Cluster from Scratch - DRBD, OCFS2 and Apache on Fedora 11
Notice how any constraints that referenced *ClusterIP* have been updated to use *WebIP* instead. This is an additional benefit of using the *crm* shell.

Next we need to convert the filesystem and Apache resources into clones. Again, the shell will automatically update any relevant constraints.

```bash
configure clone WebFSClone WebFS
configure clone WebSiteClone WebSite
```

The last step is to tell the cluster that it is now allowed to promote both instances to be Primary (aka. Master).

```bash
configure edit WebDataClone
Change *master-max* to 2
```

```bash
configure show
```

```bash
node test1
node test2
primitive WebData ocf:linbit:drbd
  params drbd_resource="wwwdata"
  op monitor interval="60s"
primitive WebFS ocf:heartbeat:Filesystem
  params device="/dev/drbd/by-res/wwwdata" directory="/var/www/html" fstype=ocfs2
primitive WebSite ocf:heartbeat:apache
  params configfile="/etc/httpd/conf/httpd.conf"
  op monitor interval="1min"
primitive ClusterIP ocf:heartbeat:IPaddr2
  params ip="192.168.9.101" cidr_netmask="32"
  op monitor interval="30s"
primitive dlm ocf:pacemaker:controld
  op monitor interval="120s"
primitive o2cb ocf:ocfs2:o2cb
  op monitor interval="120s"
ms WebDataClone WebData
  meta master-max="2" master-node-max="1" clone-max="2" clone-node-max="1" notify="true"
clone WebFSClone WebFS
clone WebIP ClusterIP
  meta globally-unique="true" clone-max="2" clone-node-max="2"
```
clone WebSiteClone WebSite
clone dlm-clone dlm
 meta interleave="true"
clone o2cb-clone o2cb
 meta interleave="true"
colocation WebFS-with-o2cb inf: WebFSClone o2cb-clone
colocation WebSite-with-WebFS inf: WebSiteClone WebFSClone
colocation fs_on_drbd inf: WebFSClone WebDataClone:Master
colocation o2cb-clone-with-dlm inf: o2cb-clone dlm-clone
colocation website-with-ip inf: WebSiteClone WebIP
order WebFS-after-WebData inf: WebDataClone:promote WebFSClone:start
order WebSite-after-WebFS inf: WebFSClone WebSiteClone
order apache-after-ip inf: WebIP WebSiteClone
order start-WebFS-after-o2cb inf: o2cb-clone WebFSClone
order start-o2cb-after-dlm inf: dlm-clone o2cb-clone
property $id="cib-bootstrap-options" \
 dc-version="1.0.5-462f1569a43740667daf7b0f6b52174e9eb8fa7" \
 cluster-infrastructure="openais" \
 expected-quorum-votes="2" \
 stonith-enabled="false" \
 no-quorum-policy="ignore"
rsc_defaults $id="rsc-options" \
 resource-stickiness="100"

Review the configuration before uploading it to the cluster, quitting the shell and watching the cluster's response

cib commit active
quit
crm_mon

crm(active)# cib commit active
INFO: committed 'active' shadow CIB to the cluster
crm(active)# quit
bye
[root@test1 ~]# crm_mon
============
Last updated: Thu Sep 3 21:37:27 2009
Stack: openais
Current DC: test2 - partition with quorum
Version: 1.0.5-462f1569a43740667daf7b0f6b52174e9eb8fa7
2 Nodes configured, 2 expected votes
6 Resources configured.
============
Online: [test1 test2]
Master/Slave Set: WebDataClone
 Masters: [test1 test2]
Clone Set: dlm-clone
 Started: [test1 test2]
Clone Set: o2cb-clone
 Started: [test1 test2]
Clone Set: WebIP
 Started: [test1 test2]
Clone Set: WebFSClone
 Started: [test1 test2]
Clone Set: WebSiteClone

Started: [test1 test2]

Recovery
Configure STONITH

Why You Need STONITH
STONITH is an acronym for Shoot-The-Other-Node-In-The-Head and it protects your data from being corrupted by rogue nodes or concurrent access.

Just because a node is unresponsive, this doesn’t mean it isn’t accessing your data. The only way to be 100% sure that your data is safe, is to use STONITH so we can be certain that the node is truly offline, before allowing the data to be accessed from another node.

STONITH also has a role to play in the event that a clustered service cannot be stopped. In this case, the cluster uses STONITH to force the whole node offline, thereby making it safe to start the service elsewhere.

What STONITH Device Should You Use
It is crucial that the STONITH device can allow the cluster to differentiate between a node failure and a network one.

The biggest mistake people make in choosing a STONITH device is to use remote power switch (such as many onboard IMPI controllers) that shares power with the node it controls. In such cases, the cluster cannot be sure if the node is really offline, or active and suffering from a network fault.

Likewise, any device that relies on the machine being active (such as SSH-based “devices” used during testing) are inappropriate.

Configuring STONITH
1. Find the correct driver: stonith -L

2. Since every device is different, the parameters needed to configure it will vary. To find out the parameters required by the device: stonith -t {type} -n

 Hopefully the developers chose names that make sense, if not you can query for some additional information by finding an active cluster node and running:

 lrmadmin -M stonith {type} pacemaker

 The output should be XML formatted text containing additional parameter descriptions

3. Create a file called stonith.xml containing a primitive resource with a class of stonith, a type of {type} and a parameter for each of the values returned in step 2

4. Create a clone from the primitive resource if the device can shoot more than one node and supports multiple simultaneous connections.

5. Upload it into the CIB using cibadmin: cibadmin -C -o resources --xml-file stonith.xml
Example

Assuming we have an IBM BladeCenter containing our two nodes and the management interface is active on 192.168.9.31, then we would chose the `external/ibmrsa` driver in step 2 and obtain the following list of parameters:

```
stonith -t external/ibmrsa -n
crm -t external/ibmrsa
```

Assuming we know the username and password for the management interface, we would create a STONITH resource with the shell:

```
crm
cib new active
configure primitive rsa-fencing stonith::external/ibmrsa 
  params hostname="test1 test2" ipaddr=192.168.9.31 userid=mgmt passwd=abc123 type=ibm 
  op monitor interval="60s"
configure clone Fencing rsa-fencing
```

And finally, since we disabled it earlier, we need to re-enable STONITH:

```
crm(stonith)# configure property stonith-enabled="true"
crm(stonith)# configure show
```

```
node test1
node test2
primitive WebData ocf:linbit:drbd 
  params drbd_resource="wwwdata" 
  op monitor interval="60s"
primitive WebFS ocf:heartbeat:Filesystem 
  params device="/dev/drbd/by-res/wwwdata" directory="/var/www/html" fstype="ocfs2"
primitive WebSite ocf:heartbeat:apache 
  params configfile="/etc/httpd/conf/httpd.conf" 
  op monitor interval="1min"
primitive ClusterIP ocf:heartbeat:IPaddr2 
  params ip="192.168.9.101" cidr_netmask="32" 
  op monitor interval="30s"
primitive dlm ocf:pacemaker:controld 
  op monitor interval="120s"
primitive o2cb ocf:ocfs2:o2cb 
  op monitor interval="120s"
primitive rsa-fencing stonith::external/ibmrsa 
  params hostname="test1 test2" ipaddr=192.168.9.31 userid=mgmt passwd=abc123 type=ibm 
  op monitor interval="60s"
```
Final Cluster Configuration

```
[root@test1 ~]# crm configure show
node test1
node test2
primitive WebData ocf:linbit:drbd
 params drbd_resource="wwwdata"
  op monitor interval="60s"
primitive WebFS ocf:heartbeat:Filesystem
 params device="/dev/drbd/by-res/wwwdata" directory="/var/www/html" fstype=ocfs2
primitive WebSite ocf:heartbeat:apache
 params configfile="/etc/httpd/conf/httpd.conf"
  op monitor interval="1min"
primitive ClusterIP ocf:heartbeat:IPaddr2
 params ip="192.168.9.101" cidr_netmask="32"
  op monitor interval="30s"
primitive dlm ocf:pacemaker:controld
  op monitor interval="120s"
primitive o2cb ocf:ocfs2:o2cb
  op monitor interval="120s"
primitive rsa-fencing stonith::external/ibmrsa
 params hostname="test1 test2" ipaddr=192.168.9.31 user_mgmt=mgmt passwd=abc123 type=ibm
  op monitor interval="60s"
ms WebDataClone WebData
  meta master-max="2" master-node-max="1" clone-max="2" clone-node-max="1" notify="true"
clone Fencing rsa-fencing
clone WebFSClone WebFS
clone WebIP ClusterIP
  meta globally-unique="true" clone-max="2" clone-node-max="2"
clone WebSiteClone WebSite
clone dlm-clone dlm
  meta interleave="true"
clone o2cb-clone o2cb
  meta interleave="true"
colocation WebFS-with-o2cb inf: WebFSClone o2cb-clone
olocation WebSite-with-WebFS inf: WebSiteClone WebFSClone
olocation fs_on_drbd inf: WebFSClone WebDataClone:Master
olocation o2cb-with-dlm inf: o2cb-clone dlm-clone
olocation website-with-ip inf: WebSiteClone WebIP
order WebFS-after-WebData inf: WebDataClone:promote WebFSClone:start
order WebSite-after-WebFS inf: WebFSClone WebSiteClone
order apache-after-ip inf: WebIP WebSiteClone
order start-WebFS-after-o2cb inf: o2cb-clone WebFSClone
order start-o2cb-after-dlm inf: dlm-clone o2cb-clone
property $id="cib-bootstrap-options"
```
Node List

The list of cluster nodes is automatically populated by the cluster.

node test1
dode test2

Cluster Options

This is where the cluster automatically stores some information about the cluster.

- `dc-version` - the version (including upstream source-code hash) of Pacemaker used on the DC
- `cluster-infrastructure` - the cluster infrastructure being used (heartbeat or openais)
- `expected-quorum-votes` - the maximum number of nodes expected to be part of the cluster and where the admin can set options that control the way the cluster operates
- `stonith-enabled=true` - Make use of STONITH
- `no-quorum-policy=ignore` - Ignore loss of quorum and continue to host resources.

Resources

Default Options

Here we configure cluster options that apply to every resource.

- `resource-stickiness` - Specify the aversion to moving resources to other machines

Fencing

primitive rsa-fencing stonith::external/ibmrsa

Service Address

Users of the services provided by the cluster require an unchanging address with which to access it. Additionally, we cloned the address so it will be active on both nodes. An `iptables` rule (created as part of the
resource agent) is used to ensure that each request only processed by one of the two clone instances. The additional meta options tell the cluster that we want two instances of the clone (one “request bucket” for each node) and that if one node fails, then the remaining node should hold both.

```
primitive ClusterIP ocf:heartbeat:IPaddr2 \
  params ip="192.168.9.101" cidr_netmask="32" \
  op monitor interval="30s"
clone WebIP ClusterIP \
  meta globally-unique="true" clone-max="2" clone-node-max="2"
```

Distributed lock manager

Cluster filesystems like OCFS2 require a lock manager. This service starts the daemon that provides user-space applications (such as the OCFS2 daemon) with access to the in-kernel lock manager. Since we need it to be available on all nodes in the cluster, we have it cloned.

```
primitive dlm ocf:pacemaker:controld \
  op monitor interval="120s"
clone dlm-clone dlm \
  meta interleave="true"
```

Oracle control daemon

OCFS2 also needs a user-space/kernel bridge that runs on every node. So here we have another clone, however this time we must also specify that it can only run on machines that are also running the DLM (colocation constraint) and that it can only be started after the DLM is running (order constraint). Additionally, the o2cb clone should only care about the DLM instances it is paired with, so we need to set the interleave option.

```
primitive o2cb ocf:ocfs2:o2cb \
  op monitor interval="120s"
clone o2cb-clone o2cb \
  meta interleave="true"
  colocation o2cb-with-dlm inf: o2cb-clone dlm-clone
order start-o2cb-after-dlm inf: dlm-clone o2cb-clone
```

DRBD - Shared Storage

Here we define the DRBD service and specify which DRBD resource (from drbd.conf) it should manage. We make it a master/slave resource and, in order to have an active/active setup, allow both instances to be promoted by specifying master-max=2. We also set the notify option so that the cluster will tell DRBD agent when it's peer changes state.

```
primitive WebData ocf:linbit:drbd \
  params drbd_resource="wwwdata" \
  op monitor interval="60s"
ms WebDataClone WebData \
  meta master-max="2" master-node-max="1" clone-max="2" clone-node-max="1" notify="true"
```

Cluster Filesystem

The cluster filesystem ensures that files are read and written correctly. We need to specify the block device (provided by DRBD), where we want it mounted and that we are using OCFS2. Again it is a clone because it is intended to be active on both nodes. The additional constraints ensure that it can only be started on nodes with active o2cb and drbd instances.

```
primitive WebFS ocf:heartbeat:Filesystem \
  params device="/dev/drbd/by-res/wwwdata" directory="/var/www/html" fstype="ocfs2"
clone WebFSClone WebFS
```

Cluster from Scratch - DRBD, OCFS2 and Apache on Fedora 11
Apache

Lastly we have the actual service, Apache. We need only tell the cluster where to find its main configuration file and restrict it to running on nodes that have the required filesystem mounted and the IP address active.

```bash
primitive WebSite ocf:heartbeat:apache \
  params configfile="/etc/httpd/conf/httpd.conf" \
  op monitor interval="1min"
clone WebSiteClone WebSite
colocation WebSite-with-WebFS inf: WebSiteClone WebFSClone
colocation website-with-ip inf: WebSiteClone WebIP
order apache-after-ip inf: WebIP WebSiteClone
order WebSite-after-WebFS inf: WebFSClone WebSiteClone
```
Add a Third Node
Appendix: Sample openais.conf

```conf
# Please read the openais.conf.5 manual page

aisexec {
    # Run as root - this is necessary to be able to manage resources with Pacemaker
    user: root
    group: root
}

service {
    # Load the Pacemaker Cluster Resource Manager
    ver: 0
    name: pacemaker
    use_mgmd: yes
    use_logd: yes
}

totem {
    version: 2

    # How long before declaring a token lost (ms)
    token: 5000

    # How many token retransmits before forming a new configuration
    token_retransmits_before_loss_const: 10

    # How long to wait for join messages in the membership protocol (ms)
    join: 1000

    # How long to wait for consensus to be achieved before starting a new round of membership configuration (ms)
    consensus: 2500

    # Turn off the virtual synchrony filter
    vsftype: none

    # Number of messages that may be sent by one processor on receipt of the token
    max_messages: 20

    # Stagger sending the node join messages by 1..send_join ms
    send_join: 45

    # Limit generated nodeids to 31-bits (positive signed integers)
    clear_node_high_bit: yes
```
Disable encryption
secauth: off

How many threads to use for encryption/decryption
threads: 0

Optionally assign a fixed node id (integer)
nodeid: 1234

interface {
 ringnumber: 0

 # The following values need to be set based on your environment
 bindnetaddr: 192.168.9.0
 mcastaddr: 226.94.1.1
 mcastport: 4000
}

logging {
 debug: off
 fileline: off
 to_syslog: yes
 to_stderr: off
 syslog_facility: daemon
 timestamp: on
}

amf {
 mode: disabled
}
Appendix: Further Reading

Project Website

http://www.clusterlabs.org

Cluster Commands

A comprehensive guide to cluster commands has been written by Novell and can be found at:

OpenAIS

http://www.openais.org