
Pacemaker 1.1

Configuration Explained
An A-Z guide to Pacemaker's Configuration Options

Andrew Beekhof

Configuration Explained

Pacemaker 1.1 Configuration Explained
An A-Z guide to Pacemaker's Configuration Options
Edition 1

Author Andrew Beekhof andrew@beekhof.net
Translator Dan Frîncu df.cluster@gmail.com

Philipp Marek philipp.marek@linbit.com
Tanja Roth taroth@suse.com
Lars Marowsky-Bree lmb@suse.com
Yan Gao ygao@suse.com
Thomas Schraitle toms@suse.com
Dejan Muhamedagic dmuhamedagic@suse.com

Copyright © 2009-2011 Andrew Beekhof.

The text of and illustrations in this document are licensed under a Creative Commons Attribution–
Share Alike 3.0 Unported license ("CC-BY-SA")3.

In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide
the URL for the original version.

In addition to the requirements of this license, the following activities are looked upon favorably:
1. If you are distributing Open Publication works on hardcopy or CD-ROM, you provide email

notification to the authors of your intent to redistribute at least thirty days before your manuscript
or media freeze, to give the authors time to provide updated documents. This notification should
describe modifications, if any, made to the document.

2. All substantive modifications (including deletions) be either clearly marked up in the document or
else described in an attachment to the document.

3. Finally, while it is not mandatory under this license, it is considered good form to offer a free copy
of any hardcopy or CD-ROM expression of the author(s) work.

The purpose of this document is to definitively explain the concepts used to configure Pacemaker. To
achieve this, it will focus exclusively on the XML syntax used to configure the CIB.

For those that are allergic to XML, there exist several unified shells and GUIs for Pacemaker. However
these tools will not be covered at all in this document1, precisely because they hide the XML.

Additionally, this document is NOT a step-by-step how-to guide for configuring a specific clustering
scenario. Although such guides exist, the purpose of this document is to provide an understanding of
the building blocks that can be used to construct any type of Pacemaker cluster. Try the Clusters from
Scratch2 document instead.

3 An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/
1 I hope, however, that the concepts explained here make the functionality of these tools more easily understood.
2 http://www.clusterlabs.org/doc

mailto:andrew@beekhof.net
mailto:df.cluster@gmail.com
mailto:philipp.marek@linbit.com
mailto:taroth@suse.com
mailto:lmb@suse.com
mailto:ygao@suse.com
mailto:toms@suse.com
mailto:dmuhamedagic@suse.com
http://www.clusterlabs.org/doc
http://www.clusterlabs.org/doc
http://creativecommons.org/licenses/by-sa/3.0/
http://www.clusterlabs.org/doc

iii

Table of Contents
Preface xv

1. Document Conventions .. xv
1.1. Typographic Conventions ... xv
1.2. Pull-quote Conventions ... xvi
1.3. Notes and Warnings .. xvii

2. We Need Feedback! ... xvii

1. Read-Me-First 1
1.1. The Scope of this Document ... 1
1.2. What Is Pacemaker? ... 1
1.3. Types of Pacemaker Clusters .. 2
1.4. Pacemaker Architecture .. 3

1.4.1. Conceptual Stack Overview .. 4
1.4.2. Internal Components .. 5

2. Configuration Basics 7
2.1. Configuration Layout ... 7
2.2. The Current State of the Cluster .. 8
2.3. How Should the Configuration be Updated? ... 9
2.4. Quickly Deleting Part of the Configuration .. 9
2.5. Updating the Configuration Without Using XML .. 10
2.6. Making Configuration Changes in a Sandbox ... 10
2.7. Testing Your Configuration Changes .. 11
2.8. Interpreting the Graphviz output ... 12

2.8.1. Small Cluster Transition .. 12
2.8.2. Complex Cluster Transition ... 13

2.9. Do I Need to Update the Configuration on all Cluster Nodes? .. 13

3. Cluster Options 15
3.1. Special Options ... 15
3.2. Configuration Version .. 15
3.3. Other Fields .. 15
3.4. Fields Maintained by the Cluster .. 16
3.5. Cluster Options ... 16
3.6. Available Cluster Options .. 16
3.7. Querying and Setting Cluster Options .. 17
3.8. When Options are Listed More Than Once ... 18

4. Cluster Nodes 19
4.1. Defining a Cluster Node .. 19
4.2. Where Pacemaker Gets the Node Name ... 19
4.3. Describing a Cluster Node ... 20
4.4. Corosync .. 20

4.4.1. Adding a New Corosync Node .. 20
4.4.2. Removing a Corosync Node ... 21
4.4.3. Replacing a Corosync Node ... 21

4.5. CMAN .. 21
4.5.1. Adding a New CMAN Node .. 21
4.5.2. Removing a CMAN Node ... 21

4.6. Heartbeat .. 22
4.6.1. Adding a New Heartbeat Node ... 22
4.6.2. Removing a Heartbeat Node ... 22
4.6.3. Replacing a Heartbeat Node ... 22

Configuration Explained

iv

5. Cluster Resources 25
5.1. What is a Cluster Resource ... 25
5.2. Supported Resource Classes .. 25

5.2.1. Open Cluster Framework .. 26
5.2.2. Linux Standard Base .. 26
5.2.3. Systemd ... 27
5.2.4. Upstart ... 27
5.2.5. System Services .. 27
5.2.6. STONITH ... 28

5.3. Resource Properties .. 28
5.4. Resource Options ... 29
5.5. Setting Global Defaults for Resource Options ... 30
5.6. Instance Attributes .. 30
5.7. Resource Operations .. 32

5.7.1. Monitoring Resources for Failure ... 32
5.7.2. Setting Global Defaults for Operations ... 32

6. Resource Constraints 35
6.1. Scores .. 35

6.1.1. Infinity Math ... 35
6.2. Deciding Which Nodes a Resource Can Run On .. 35

6.2.1. Options .. 36
6.2.2. Asymmetrical "Opt-In" Clusters ... 36
6.2.3. Symmetrical "Opt-Out" Clusters ... 36
6.2.4. What if Two Nodes Have the Same Score ... 37

6.3. Specifying in which Order Resources Should Start/Stop .. 37
6.3.1. Mandatory Ordering .. 38
6.3.2. Advisory Ordering ... 38

6.4. Placing Resources Relative to other Resources .. 38
6.4.1. Options .. 39
6.4.2. Mandatory Placement ... 39
6.4.3. Advisory Placement .. 39

6.5. Ordering Sets of Resources .. 40
6.6. Ordered Set .. 40
6.7. Two Sets of Unordered Resources .. 41
6.8. Three Resources Sets ... 42
6.9. Collocating Sets of Resources ... 42
6.10. Another Three Resources Sets .. 44

7. Receiving Notification for Cluster Events 45
7.1. Configuring SNMP Notifications ... 45
7.2. Configuring Email Notifications .. 45
7.3. Configuring Notifications via External-Agent .. 46

8. Rules 47
8.1. Node Attribute Expressions ... 47
8.2. Time/Date Based Expressions ... 48

8.2.1. Date Specifications ... 49
8.2.2. Durations ... 49

8.3. Sample Time Based Expressions ... 49
8.4. Using Rules to Determine Resource Location ... 51

8.4.1. Using score-attribute Instead of score ... 52
8.5. Using Rules to Control Resource Options .. 52
8.6. Using Rules to Control Cluster Options .. 53
8.7. Ensuring Time Based Rules Take Effect .. 53

v

9. Advanced Configuration 55
9.1. Connecting from a Remote Machine .. 55
9.2. Specifying When Recurring Actions are Performed ... 56
9.3. Moving Resources .. 56

9.3.1. Manual Intervention .. 56
9.3.2. Moving Resources Due to Failure ... 58
9.3.3. Moving Resources Due to Connectivity Changes ... 58
9.3.4. Resource Migration .. 61

9.4. Reusing Rules, Options and Sets of Operations ... 62
9.5. Reloading Services After a Definition Change ... 63

10. Advanced Resource Types 65
10.1. Groups - A Syntactic Shortcut .. 65

10.1.1. Group Properties .. 66
10.1.2. Group Options .. 66
10.1.3. Group Instance Attributes ... 66
10.1.4. Group Contents .. 66
10.1.5. Group Constraints .. 67
10.1.6. Group Stickiness .. 67

10.2. Clones - Resources That Get Active on Multiple Hosts .. 67
10.2.1. Clone Properties ... 68
10.2.2. Clone Options .. 68
10.2.3. Clone Instance Attributes .. 68
10.2.4. Clone Contents .. 68
10.2.5. Clone Constraints ... 68
10.2.6. Clone Stickiness ... 69
10.2.7. Clone Resource Agent Requirements .. 69

10.3. Multi-state - Resources That Have Multiple Modes .. 71
10.3.1. Multi-state Properties .. 71
10.3.2. Multi-state Options .. 71
10.3.3. Multi-state Instance Attributes ... 72
10.3.4. Multi-state Contents .. 72
10.3.5. Monitoring Multi-State Resources .. 72
10.3.6. Multi-state Constraints .. 72
10.3.7. Multi-state Stickiness .. 73
10.3.8. Which Resource Instance is Promoted .. 74
10.3.9. Multi-state Resource Agent Requirements ... 74
10.3.10. Multi-state Notifications ... 74
10.3.11. Multi-state - Proper Interpretation of Notification Environment Variables 75

11. Utilization and Placement Strategy 79
11.1. Background ... 79
11.2. Utilization attributes ... 79
11.3. Placement Strategy ... 80
11.4. Allocation Details ... 81

11.4.1. Which node is preferred to be chosen to get consumed first on allocating
resources? ... 81
11.4.2. Which resource is preferred to be chosen to get assigned first? 81

11.5. Limitations .. 82
11.6. Strategies for Dealing with the Limitations .. 82

12. Resource Templates 83
12.1. Abstract .. 83
12.2. Configuring Resources with Templates ... 83
12.3. Referencing Templates in Constraints .. 84

Configuration Explained

vi

13. Configure STONITH 87
13.1. What Is STONITH ... 87
13.2. What STONITH Device Should You Use .. 87
13.3. Configuring STONITH .. 87
13.4. Example ... 88

14. Status - Here be dragons 91
14.1. Node Status .. 91
14.2. Transient Node Attributes .. 92
14.3. Operation History .. 92

14.3.1. Simple Example ... 94
14.3.2. Complex Resource History Example .. 95

15. Multi-Site Clusters and Tickets 97
15.1. Abstract .. 97
15.2. Challenges for Multi-Site Clusters .. 97
15.3. Conceptual Overview .. 97

15.3.1. Components and Concepts ... 98
15.4. Configuring Ticket Dependencies ... 99
15.5. Managing Multi-Site Clusters .. 100

15.5.1. Granting and Revoking Tickets Manually ... 100
15.5.2. Granting and Revoking Tickets via a Cluster Ticket Registry 100
15.5.3. General Management of Tickets .. 102

15.6. For more information ... 102

A. FAQ 103
Frequently Asked Questions ... 103

A.1. History .. 103
A.2. Setup ... 103

B. More About OCF Resource Agents 105
B.1. Location of Custom Scripts ... 105
B.2. Actions ... 105
B.3. How are OCF Return Codes Interpreted? .. 106
B.4. OCF Return Codes ... 106
B.5. Exceptions .. 107

C. What Changed in 1.0 109
C.1. New ... 109
C.2. Changed .. 109
C.3. Removed .. 110

D. Installation 111
D.1. Choosing a Cluster Stack ... 111
D.2. Enabling Pacemaker ... 111

D.2.1. For Corosync ... 111
D.2.2. For Heartbeat .. 113

E. Upgrading Cluster Software 115
E.1. Version Compatibility .. 115
E.2. Complete Cluster Shutdown .. 116

E.2.1. Procedure .. 116
E.3. Rolling (node by node) .. 116

E.3.1. Procedure .. 116
E.3.2. Version Compatibility .. 116
E.3.3. Crossing Compatibility Boundaries .. 117

E.4. Disconnect and Reattach .. 117

vii

E.4.1. Procedure .. 117
E.4.2. Notes ... 118

F. Upgrading the Configuration from 0.6 119
F.1. Preparation ... 119
F.2. Perform the upgrade ... 119

F.2.1. Upgrade the software ... 119
F.2.2. Upgrade the Configuration .. 119
F.2.3. Manually Upgrading the Configuration ... 121

G. init-Script LSB Compliance 123

H. Sample Configurations 125
H.1. Empty .. 125
H.2. Simple .. 125
H.3. Advanced Configuration .. 126

I. Further Reading 129

J. Revision History 131

Index 133

viii

ix

List of Figures
1.1. Active/Passive Redundancy ... 2
1.2. Shared Failover .. 3
1.3. N to N Redundancy .. 3
1.4. Conceptual overview of the cluster stack ... 4
1.5. The Pacemaker stack when running on Corosync .. 5
1.6. Subsystems of a Pacemaker cluster .. 5
6.1. Visual representation of the four resources' start order for the above constraints 40
6.2. Visual representation of the start order for two ordered sets of unordered resources 41
6.3. Visual representation of the start order for the three sets defined above 42
6.4. Visual representation of a colocation chain where the members of the middle set have no
inter-dependencies ... 44

x

xi

List of Tables
3.1. Configuration Version Properties .. 15
3.2. Properties Controlling Validation .. 15
3.3. Properties Maintained by the Cluster ... 16
3.4. Cluster Options ... 16
5.1. Properties of a Primitive Resource ... 28
5.2. Options for a Primitive Resource ... 29
5.3. Properties of an Operation .. 32
6.1. Options for Simple Location Constraints ... 36
6.2. Properties of an Ordering Constraint .. 37
6.3. Properties of a Collocation Constraint .. 39
7.1. Environment Variables Passed to the External Agent .. 46
8.1. Properties of a Rule .. 47
8.2. Properties of an Expression .. 48
8.3. Properties of a Date Expression .. 48
8.4. Properties of a Date Spec ... 49
9.1. Environment Variables Used to Connect to Remote Instances of the CIB 55
9.2. Extra top-level CIB options for remote access .. 55
9.3. Common Options for a ping Resource ... 59
10.1. Properties of a Group Resource .. 66
10.2. Properties of a Clone Resource ... 68
10.3. Clone specific configuration options ... 68
10.4. Environment variables supplied with Clone notify actions ... 70
10.5. Properties of a Multi-State Resource .. 71
10.6. Multi-state specific resource configuration options ... 71
10.7. Additional constraint options relevant to multi-state resources .. 73
10.8. Role implications of OCF return codes ... 74
10.9. Environment variables supplied with Master notify actions ... 74
14.1. Authoritative Sources for State Information ... 91
14.2. Node Status Fields .. 91
14.3. Contents of an lrm_rsc_op job ... 93
B.1. Required Actions for OCF Agents .. 105
B.2. Optional Actions for OCF Agents ... 106
B.3. Types of recovery performed by the cluster .. 106
B.4. OCF Return Codes and their Recovery Types .. 106
E.1. Summary of Upgrade Methodologies ... 115
E.2. Version Compatibility Table ... 116

xii

xiii

List of Examples
2.1. An empty configuration ... 7
2.2. Sample output from crm_mon ... 8
2.3. Sample output from crm_mon -n ... 8
2.4. Safely using an editor to modify the cluster configuration .. 9
2.5. Safely using an editor to modify a subsection of the cluster configuration 9
2.6. Searching for STONITH related configuration items .. 9
2.7. Creating and displaying the active sandbox .. 10
2.8. Using a sandbox to make multiple changes atomically .. 11
3.1. An example of the fields set for a cib object ... 16
3.2. Deleting an option that is listed twice ... 18
4.1. Example Heartbeat cluster node entry ... 19
4.2. Example Corosync cluster node entry .. 19
4.3. The result of using crm_attribute to specify which kernel pcmk-1 is running 20
5.1. An example system resource .. 28
5.2. An example OCF resource .. 29
5.3. An LSB resource with cluster options ... 30
5.4. An example OCF resource with instance attributes ... 31
5.5. Displaying the metadata for the Dummy resource agent template .. 31
5.6. An OCF resource with a recurring health check .. 32
5.7. An OCF resource with custom timeouts for its implicit actions .. 33
5.8. An OCF resource with two recurring health checks, performing different levels of checks -
specified via OCF_CHECK_LEVEL. .. 33
5.9. Example of an OCF resource with a disabled health check ... 34
6.1. Example set of opt-in location constraints .. 36
6.2. Example set of opt-out location constraints .. 36
6.3. Example of two resources that prefer two nodes equally ... 37
6.4. Example of an optional and mandatory ordering constraint .. 38
6.5. A chain of ordered resources .. 40
6.6. A chain of ordered resources expressed as a set ... 40
6.7. A group resource with the equivalent ordering rules .. 41
6.8. Ordered sets of unordered resources ... 41
6.9. Advanced use of set ordering - Three ordered sets, two of which are internally unordered 42
6.10. A chain of collocated resources ... 42
6.11. The equivalent colocation chain expressed using resource_sets 43
6.12. Using colocation sets to specify a common peer. .. 43
6.13. A colocation chain where the members of the middle set have no inter-dependencies and
the last has master status. ... 44
7.1. Configuring ClusterMon to send SNMP traps .. 45
7.2. Configuring ClusterMon to send email alerts .. 46
7.3. Configuring ClusterMon to execute an external-agent ... 46
8.1. True if now is any time in the year 2005 .. 49
8.2. Equivalent expression ... 50
8.3. 9am-5pm, Mon-Friday ... 50
8.4. 9am-6pm, Mon-Friday, or all day saturday ... 50
8.5. 9am-5pm or 9pm-12pm, Mon-Friday .. 50
8.6. Mondays in March 2005 .. 50
8.7. A full moon on Friday the 13th .. 51
8.8. Prevent myApacheRsc from running on c001n03 .. 51
8.9. Prevent myApacheRsc from running on c001n03 - expanded version 51
8.10. A sample nodes section for use with score-attribute .. 52
8.11. Defining different resource options based on the node name ... 52

Configuration Explained

xiv

8.12. Change resource-stickiness during working hours .. 53
9.1. Specifying a Base for Recurring Action Intervals ... 56
9.2. An example ping cluster resource that checks node connectivity once every minute 59
9.3. Don’t run on unconnected nodes ... 60
9.4. Run only on nodes connected to three or more ping nodes; this assumes multiplier is
set to 1000: ... 60
9.5. Prefer the node with the most connected ping nodes .. 60
9.6. How the cluster translates the pingd constraint ... 61
9.7. A more complex example of choosing a location based on connectivity 61
9.8. Referencing rules from other constraints .. 62
9.9. Referencing attributes, options, and operations from other resources 62
9.10. The DRBD Agent’s Control logic for Supporting the reload Operation 63
9.11. The DRBD Agent Advertising Support for the reload Operation ... 63
9.12. Parameter that can be changed using reload .. 64
10.1. An example group ... 65
10.2. How the cluster sees a group resource .. 66
10.3. Example constraints involving groups ... 67
10.4. An example clone ... 67
10.5. Example constraints involving clones ... 69
10.6. Example notification variables .. 70
10.7. Monitoring both states of a multi-state resource .. 72
10.8. Example constraints involving multi-state resources .. 73
10.9. Manually specifying which node should be promoted .. 74
14.1. A bare-bones status entry for a healthy node called cl-virt-1 ... 91
14.2. Example set of transient node attributes for node "cl-virt-1" ... 92
14.3. A record of the apcstonith resource ... 93
14.4. A monitor operation (determines current state of the apcstonith resource) 94
14.5. Resource history of a pingd clone with multiple jobs ... 95
H.1. An Empty Configuration .. 125
H.2. Simple Configuration - 2 nodes, some cluster options and a resource 125
H.3. Advanced configuration - groups and clones with stonith .. 126

xv

Preface

Table of Contents
1. Document Conventions .. xv

1.1. Typographic Conventions ... xv
1.2. Pull-quote Conventions ... xvi
1.3. Notes and Warnings .. xvii

2. We Need Feedback! ... xvii

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later include
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keys and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key, all presented in mono-spaced bold and
all distinguishable thanks to context.

Key combinations can be distinguished from an individual key by the plus sign that connects each part
of a key combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to a virtual terminal.

The first example highlights a particular key to press. The second example highlights a key
combination: a set of three keys pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

xvi

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, select the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories
→ Character Map from the main menu bar. Next, choose Search → Find… from
the Character Map menu bar, type the name of the character in the Search field
and click Next. The character you sought will be highlighted in the Character Table.
Double-click this highlighted character to place it in the Text to copy field and then

click the Copy button. Now switch back to your document and choose Edit → Paste
from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

Notes and Warnings

xvii

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!

Preface

xviii

If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla2 against the product
Pacemaker.

When submitting a bug report, be sure to mention the manual's identifier: Pacemaker_Explained

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

2 http://bugs.clusterlabs.org

http://bugs.clusterlabs.org

Chapter 1.

1

Read-Me-First

Table of Contents
1.1. The Scope of this Document ... 1
1.2. What Is Pacemaker? ... 1
1.3. Types of Pacemaker Clusters .. 2
1.4. Pacemaker Architecture .. 3

1.4.1. Conceptual Stack Overview .. 4
1.4.2. Internal Components .. 5

1.1. The Scope of this Document
The purpose of this document is to definitively explain the concepts used to configure Pacemaker. To
achieve this, it will focus exclusively on the XML syntax used to configure the CIB.

For those that are allergic to XML, there exist several unified shells and GUIs for Pacemaker. However
these tools will not be covered at all in this document 1 , precisely because they hide the XML.

Additionally, this document is NOT a step-by-step how-to guide for configuring a specific clustering
scenario.

Although such guides exist, the purpose of this document is to provide an understanding of the
building blocks that can be used to construct any type of Pacemaker cluster.

1.2. What Is Pacemaker?
Pacemaker is a cluster resource manager.

It achieves maximum availability for your cluster services (aka. resources) by detecting and recovering
from node and resource-level failures by making use of the messaging and membership capabilities
provided by your preferred cluster infrastructure (either Corosync2 or Heartbeat3.

Pacemaker’s key features include:

• Detection and recovery of node and service-level failures

• Storage agnostic, no requirement for shared storage

• Resource agnostic, anything that can be scripted can be clustered

• Supports STONITH4 for ensuring data integrity

• Supports large and small clusters

• Supports both quorate5 and resource driven6 clusters

1 I hope, however, that the concepts explained here make the functionality of these tools more easily understood.
2 http://www.corosync.org/
3 http://linux-ha.org/wiki/Heartbeat
4 http://en.wikipedia.org/wiki/STONITH
5 http://en.wikipedia.org/wiki/Quorum_(Distributed_Systems)
6 http://devresources.linux-foundation.org/dev/clusters/docs/ResourceDrivenClusters.pdf

http://www.corosync.org/
http://linux-ha.org/wiki/Heartbeat
http://en.wikipedia.org/wiki/STONITH
http://en.wikipedia.org/wiki/Quorum_(Distributed_Systems)
http://devresources.linux-foundation.org/dev/clusters/docs/ResourceDrivenClusters.pdf
http://www.corosync.org/
http://linux-ha.org/wiki/Heartbeat
http://en.wikipedia.org/wiki/STONITH
http://en.wikipedia.org/wiki/Quorum_(Distributed_Systems)
http://devresources.linux-foundation.org/dev/clusters/docs/ResourceDrivenClusters.pdf

Chapter 1. Read-Me-First

2

• Supports practically any redundancy configuration7

• Automatically replicated configuration that can be updated from any node

• Ability to specify cluster-wide service ordering, colocation and anti-colocation

• Support for advanced services type

• Clones: for services which need to be active on multiple nodes

• Multi-state: for services with multiple modes (eg. master/slave, primary/secondary)

1.3. Types of Pacemaker Clusters
Pacemaker makes no assumptions about your environment, this allows it to support practically any
redundancy configuration8 including Active/Active, Active/Passive, N+1, N+M, N-to-1 and N-to-N.

Figure 1.1. Active/Passive Redundancy

Two-node Active/Passive clusters using Pacemaker and DRBD are a cost-effective solution for many
High Availability situations.

7 http://en.wikipedia.org/wiki/High-availability_cluster#Node_configurations
8 http://en.wikipedia.org/wiki/High-availability_cluster#Node_configurations

http://en.wikipedia.org/wiki/High-availability_cluster#Node_configurations
http://en.wikipedia.org/wiki/High-availability_cluster#Node_configurations
http://en.wikipedia.org/wiki/High-availability_cluster#Node_configurations
http://en.wikipedia.org/wiki/High-availability_cluster#Node_configurations

Pacemaker Architecture

3

Figure 1.2. Shared Failover

By supporting many nodes, Pacemaker can dramatically reduce hardware costs by allowing several
active/passive clusters to be combined and share a common backup node

Figure 1.3. N to N Redundancy

When shared storage is available, every node can potentially be used for failover. Pacemaker can
even run multiple copies of services to spread out the workload.

1.4. Pacemaker Architecture
At the highest level, the cluster is made up of three pieces:

• Core cluster infrastructure providing messaging and membership functionality (illustrated in red)

• Non-cluster aware components (illustrated in green).

In a Pacemaker cluster, these pieces include not only the scripts that knows how to start, stop
and monitor resources, but also a local daemon that masks the differences between the different
standards these scripts implement.

Chapter 1. Read-Me-First

4

• A brain (illustrated in blue)

This component processes and reacts to events from the cluster (nodes leaving or joining) and
resources (eg. monitor failures) as well as configuration changes from the administrator. In response
to all of these events, Pacemaker will compute the ideal state of the cluster and plot a path to
achieve it. This may include moving resources, stopping nodes and even forcing nodes offline with
remote power switches.

1.4.1. Conceptual Stack Overview

Figure 1.4. Conceptual overview of the cluster stack

When combined with Corosync, Pacemaker also supports popular open source cluster filesystems.
footnote:[Even though Pacemaker also supports Heartbeat, the filesystems need to use the stack for
messaging and membership and Corosync seems to be what they’re standardizing on.

Technically it would be possible for them to support Heartbeat as well, however there seems little
interest in this.]

Due to recent standardization within the cluster filesystem community, they make use of a common
distributed lock manager which makes use of Corosync for its messaging capabilities and Pacemaker
for its membership (which nodes are up/down) and fencing services.

Internal Components

5

Figure 1.5. The Pacemaker stack when running on Corosync

1.4.2. Internal Components
Pacemaker itself is composed of four key components (illustrated below in the same color scheme as
the previous diagram):

• CIB (aka. Cluster Information Base)

• CRMd (aka. Cluster Resource Management daemon)

• PEngine (aka. PE or Policy Engine)

• STONITHd

Figure 1.6. Subsystems of a Pacemaker cluster

The CIB uses XML to represent both the cluster’s configuration and current state of all resources in
the cluster. The contents of the CIB are automatically kept in sync across the entire cluster and are
used by the PEngine to compute the ideal state of the cluster and how it should be achieved.

Chapter 1. Read-Me-First

6

This list of instructions is then fed to the DC (Designated Controller). Pacemaker centralizes all cluster
decision making by electing one of the CRMd instances to act as a master. Should the elected CRMd
process (or the node it is on) fail… a new one is quickly established.

The DC carries out PEngine’s instructions in the required order by passing them to either the LRMd
(Local Resource Management daemon) or CRMd peers on other nodes via the cluster messaging
infrastructure (which in turn passes them on to their LRMd process).

The peer nodes all report the results of their operations back to the DC and, based on the expected
and actual results, will either execute any actions that needed to wait for the previous one to
complete, or abort processing and ask the PEngine to recalculate the ideal cluster state based on the
unexpected results.

In some cases, it may be necessary to power off nodes in order to protect shared data or complete
resource recovery. For this Pacemaker comes with STONITHd.

STONITH is an acronym for Shoot-The-Other-Node-In-The-Head and is usually implemented with a
remote power switch.

In Pacemaker, STONITH devices are modeled as resources (and configured in the CIB) to enable
them to be easily monitored for failure, however STONITHd takes care of understanding the STONITH
topology such that its clients simply request a node be fenced and it does the rest.

Chapter 2.

7

Configuration Basics

Table of Contents
2.1. Configuration Layout ... 7
2.2. The Current State of the Cluster .. 8
2.3. How Should the Configuration be Updated? ... 9
2.4. Quickly Deleting Part of the Configuration .. 9
2.5. Updating the Configuration Without Using XML .. 10
2.6. Making Configuration Changes in a Sandbox ... 10
2.7. Testing Your Configuration Changes .. 11
2.8. Interpreting the Graphviz output ... 12

2.8.1. Small Cluster Transition .. 12
2.8.2. Complex Cluster Transition ... 13

2.9. Do I Need to Update the Configuration on all Cluster Nodes? .. 13

2.1. Configuration Layout
The cluster is written using XML notation and divided into two main sections: configuration and status.

The status section contains the history of each resource on each node and based on this data,
the cluster can construct the complete current state of the cluster. The authoritative source for the
status section is the local resource manager (lrmd) process on each cluster node and the cluster will
occasionally repopulate the entire section. For this reason it is never written to disk and administrators
are advised against modifying it in any way.

The configuration section contains the more traditional information like cluster options, lists of
resources and indications of where they should be placed. The configuration section is the primary
focus of this document.

The configuration section itself is divided into four parts:

• Configuration options (called crm_config)

• Nodes

• Resources

• Resource relationships (called constraints)

Example 2.1. An empty configuration

 <cib admin_epoch="0" epoch="0" num_updates="0" have-quorum="false">
 <configuration>
 <crm_config/>
 <nodes/>
 <resources/>
 <constraints/>
 </configuration>
 <status/>
 </cib>

Chapter 2. Configuration Basics

8

2.2. The Current State of the Cluster
Before one starts to configure a cluster, it is worth explaining how to view the finished product. For
this purpose we have created the crm_mon utility that will display the current state of an active
cluster. It can show the cluster status by node or by resource and can be used in either single-shot or
dynamically-updating mode. There are also modes for displaying a list of the operations performed
(grouped by node and resource) as well as information about failures.

Using this tool, you can examine the state of the cluster for irregularities and see how it responds
when you cause or simulate failures.

Details on all the available options can be obtained using the crm_mon --help command.

Example 2.2. Sample output from crm_mon

 ============
 Last updated: Fri Nov 23 15:26:13 2007
 Current DC: sles-3 (2298606a-6a8c-499a-9d25-76242f7006ec)
 3 Nodes configured.
 5 Resources configured.
 ============

 Node: sles-1 (1186dc9a-324d-425a-966e-d757e693dc86): online
 192.168.100.181 (heartbeat::ocf:IPaddr): Started sles-1
 192.168.100.182 (heartbeat:IPaddr): Started sles-1
 192.168.100.183 (heartbeat::ocf:IPaddr): Started sles-1
 rsc_sles-1 (heartbeat::ocf:IPaddr): Started sles-1
 child_DoFencing:2 (stonith:external/vmware): Started sles-1
 Node: sles-2 (02fb99a8-e30e-482f-b3ad-0fb3ce27d088): standby
 Node: sles-3 (2298606a-6a8c-499a-9d25-76242f7006ec): online
 rsc_sles-2 (heartbeat::ocf:IPaddr): Started sles-3
 rsc_sles-3 (heartbeat::ocf:IPaddr): Started sles-3
 child_DoFencing:0 (stonith:external/vmware): Started sles-3

Example 2.3. Sample output from crm_mon -n

 ============
 Last updated: Fri Nov 23 15:26:13 2007
 Current DC: sles-3 (2298606a-6a8c-499a-9d25-76242f7006ec)
 3 Nodes configured.
 5 Resources configured.
 ============

 Node: sles-1 (1186dc9a-324d-425a-966e-d757e693dc86): online
 Node: sles-2 (02fb99a8-e30e-482f-b3ad-0fb3ce27d088): standby
 Node: sles-3 (2298606a-6a8c-499a-9d25-76242f7006ec): online

 Resource Group: group-1
 192.168.100.181 (heartbeat::ocf:IPaddr): Started sles-1
 192.168.100.182 (heartbeat:IPaddr): Started sles-1
 192.168.100.183 (heartbeat::ocf:IPaddr): Started sles-1
 rsc_sles-1 (heartbeat::ocf:IPaddr): Started sles-1
 rsc_sles-2 (heartbeat::ocf:IPaddr): Started sles-3
 rsc_sles-3 (heartbeat::ocf:IPaddr): Started sles-3
 Clone Set: DoFencing
 child_DoFencing:0 (stonith:external/vmware): Started sles-3
 child_DoFencing:1 (stonith:external/vmware): Stopped
 child_DoFencing:2 (stonith:external/vmware): Started sles-1

How Should the Configuration be Updated?

9

The DC (Designated Controller) node is where all the decisions are made and if the current DC fails
a new one is elected from the remaining cluster nodes. The choice of DC is of no significance to an
administrator beyond the fact that its logs will generally be more interesting.

2.3. How Should the Configuration be Updated?
There are three basic rules for updating the cluster configuration:

• Rule 1 - Never edit the cib.xml file manually. Ever. I’m not making this up.

• Rule 2 - Read Rule 1 again.

• Rule 3 - The cluster will notice if you ignored rules 1 & 2 and refuse to use the configuration.

Now that it is clear how NOT to update the configuration, we can begin to explain how you should.

The most powerful tool for modifying the configuration is the cibadmin command which talks to a
running cluster. With cibadmin, the user can query, add, remove, update or replace any part of
the configuration; all changes take effect immediately, so there is no need to perform a reload-like
operation.

The simplest way of using cibadmin is to use it to save the current configuration to a temporary file,
edit that file with your favorite text or XML editor and then upload the revised configuration.

Example 2.4. Safely using an editor to modify the cluster configuration

cibadmin --query > tmp.xml
vi tmp.xml
cibadmin --replace --xml-file tmp.xml

Some of the better XML editors can make use of a Relax NG schema to help make sure any changes
you make are valid. The schema describing the configuration can normally be found in /usr/lib/
heartbeat/pacemaker.rng on most systems.

If you only wanted to modify the resources section, you could instead do

Example 2.5. Safely using an editor to modify a subsection of the cluster configuration

cibadmin --query --obj_type resources > tmp.xml
vi tmp.xml
cibadmin --replace --obj_type resources --xml-file tmp.xml

to avoid modifying any other part of the configuration.

2.4. Quickly Deleting Part of the Configuration
Identify the object you wish to delete. Eg. run

Example 2.6. Searching for STONITH related configuration items

cibadmin -Q | grep stonith

 <nvpair id="cib-bootstrap-options-stonith-action" name="stonith-action" value="reboot"/>
 <nvpair id="cib-bootstrap-options-stonith-enabled" name="stonith-enabled" value="1"/>

Chapter 2. Configuration Basics

10

 <primitive id="child_DoFencing" class="stonith" type="external/vmware">
 <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:1" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:2" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
 <lrm_resource id="child_DoFencing:3" type="external/vmware" class="stonith">

Next identify the resource’s tag name and id (in this case we’ll choose primitive and
child_DoFencing). Then simply execute:

cibadmin --delete --crm_xml '<primitive id="child_DoFencing"/>'

2.5. Updating the Configuration Without Using XML
Some common tasks can also be performed with one of the higher level tools that avoid the need to
read or edit XML.

To enable stonith for example, one could run:

crm_attribute --attr-name stonith-enabled --attr-value true

Or, to see if somenode is allowed to run resources, there is:

crm_standby --get-value --node-uname somenode

Or, to find the current location of my-test-rsc, one can use:

crm_resource --locate --resource my-test-rsc

2.6. Making Configuration Changes in a Sandbox
Often it is desirable to preview the effects of a series of changes before updating the configuration
atomically. For this purpose we have created crm_shadow which creates a "shadow" copy of the
configuration and arranges for all the command line tools to use it.

To begin, simply invoke crm_shadow and give it the name of a configuration to create 1 ; be sure to
follow the simple on-screen instructions.

Warning

Read the above carefully, failure to do so could result in you destroying the cluster’s active
configuration!

Example 2.7. Creating and displaying the active sandbox

 # crm_shadow --create test

1 Shadow copies are identified with a name, making it possible to have more than one.

Testing Your Configuration Changes

11

 Setting up shadow instance
 Type Ctrl-D to exit the crm_shadow shell
 shadow[test]:
 shadow[test] # crm_shadow --which
 test

From this point on, all cluster commands will automatically use the shadow copy instead of talking
to the cluster’s active configuration. Once you have finished experimenting, you can either commit
the changes, or discard them as shown below. Again, be sure to follow the on-screen instructions
carefully.

For a full list of crm_shadow options and commands, invoke it with the <parameter>--help</
parameter> option.

Example 2.8. Using a sandbox to make multiple changes atomically

 shadow[test] # crm_failcount -G -r rsc_c001n01
 name=fail-count-rsc_c001n01 value=0
 shadow[test] # crm_standby -v on -n c001n02
 shadow[test] # crm_standby -G -n c001n02
 name=c001n02 scope=nodes value=on
 shadow[test] # cibadmin --erase --force
 shadow[test] # cibadmin --query
 <cib cib_feature_revision="1" validate-
with="pacemaker-1.0" admin_epoch="0" crm_feature_set="3.0" have-quorum="1" epoch="112"
 dc-uuid="c001n01" num_updates="1" cib-last-written="Fri Jun 27 12:17:10 2008">
 <configuration>
 <crm_config/>
 <nodes/>
 <resources/>
 <constraints/>
 </configuration>
 <status/>
 </cib>
 shadow[test] # crm_shadow --delete test --force
 Now type Ctrl-D to exit the crm_shadow shell
 shadow[test] # exit
 # crm_shadow --which
 No shadow instance provided
 # cibadmin -Q
 <cib cib_feature_revision="1" validate-
with="pacemaker-1.0" admin_epoch="0" crm_feature_set="3.0" have-quorum="1" epoch="110"
 dc-uuid="c001n01" num_updates="551">
 <configuration>
 <crm_config>
 <cluster_property_set id="cib-bootstrap-options">
 <nvpair id="cib-bootstrap-1" name="stonith-enabled" value="1"/>
 <nvpair id="cib-bootstrap-2" name="pe-input-series-max" value="30000"/>

Making changes in a sandbox and verifying the real configuration is untouched

2.7. Testing Your Configuration Changes
We saw previously how to make a series of changes to a "shadow" copy of the configuration. Before
loading the changes back into the cluster (eg. crm_shadow --commit mytest --force), it is
often advisable to simulate the effect of the changes with crm_simulate, eg.

crm_simulate --live-check -VVVVV --save-graph tmp.graph --save-dotfile tmp.dot

Chapter 2. Configuration Basics

12

The tool uses the same library as the live cluster to show what it would have done given the supplied
input. It’s output, in addition to a significant amount of logging, is stored in two files tmp.graph and
tmp.dot, both are representations of the same thing — the cluster’s response to your changes.

In the graph file is stored the complete transition, containing a list of all the actions, their parameters
and their pre-requisites. Because the transition graph is not terribly easy to read, the tool also
generates a Graphviz dot-file representing the same information.

2.8. Interpreting the Graphviz output
• Arrows indicate ordering dependencies

• Dashed-arrows indicate dependencies that are not present in the transition graph

• Actions with a dashed border of any color do not form part of the transition graph

• Actions with a green border form part of the transition graph

• Actions with a red border are ones the cluster would like to execute but cannot run

• Actions with a blue border are ones the cluster does not feel need to be executed

• Actions with orange text are pseudo/pretend actions that the cluster uses to simplify the graph

• Actions with black text are sent to the LRM

• Resource actions have text of the form rsc_action_interval node

• Any action depending on an action with a red border will not be able to execute.

• Loops are really bad. Please report them to the development team.

2.8.1. Small Cluster Transition

In the above example, it appears that a new node, node2, has come online and that the cluster
is checking to make sure rsc1, rsc2 and rsc3 are not already running there (Indicated by the
*_monitor_0 entries). Once it did that, and assuming the resources were not active there, it would
have liked to stop rsc1 and rsc2 on node1 and move them to node2. However, there appears to
be some problem and the cluster cannot or is not permitted to perform the stop actions which implies
it also cannot perform the start actions. For some reason the cluster does not want to start rsc3
anywhere.

For information on the options supported by crm_simulate, use the --help option.

Complex Cluster Transition

13

2.8.2. Complex Cluster Transition

2.9. Do I Need to Update the Configuration on all Cluster
Nodes?
No. Any changes are immediately synchronized to the other active members of the cluster.

Chapter 2. Configuration Basics

14

To reduce bandwidth, the cluster only broadcasts the incremental updates that result from your
changes and uses MD5 checksums to ensure that each copy is completely consistent.

Chapter 3.

15

Cluster Options

Table of Contents
3.1. Special Options ... 15
3.2. Configuration Version .. 15
3.3. Other Fields .. 15
3.4. Fields Maintained by the Cluster .. 16
3.5. Cluster Options ... 16
3.6. Available Cluster Options .. 16
3.7. Querying and Setting Cluster Options .. 17
3.8. When Options are Listed More Than Once .. 18

3.1. Special Options
The reason for these fields to be placed at the top level instead of with the rest of cluster options is
simply a matter of parsing. These options are used by the configuration database which is, by design,
mostly ignorant of the content it holds. So the decision was made to place them in an easy to find
location.

3.2. Configuration Version

When a node joins the cluster, the cluster will perform a check to see who has the best configuration
based on the fields below. It then asks the node with the highest (admin_epoch, epoch,
num_updates) tuple to replace the configuration on all the nodes - which makes setting them, and
setting them correctly, very important.

Table 3.1. Configuration Version Properties

Field Description

admin_epoch Never modified by the cluster. Use this to make the configurations
on any inactive nodes obsolete.

Never set this value to zero, in such cases the cluster cannot tell
the difference between your configuration and the "empty" one
used when nothing is found on disk.

epoch Incremented every time the configuration is updated (usually by
the admin)

num_updates Incremented every time the configuration or status is updated
(usually by the cluster)

3.3. Other Fields

Table 3.2. Properties Controlling Validation

Field Description

validate-with Determines the type of validation being done on the configuration.
If set to "none", the cluster will not verify that updates conform to

Chapter 3. Cluster Options

16

Field Description
the DTD (nor reject ones that don’t). This option can be useful
when operating a mixed version cluster during an upgrade.

3.4. Fields Maintained by the Cluster
Table 3.3. Properties Maintained by the Cluster

Field Description

cib-last-written Indicates when the configuration was last written to disk.
Informational purposes only.

dc-uuid Indicates which cluster node is the current leader. Used by the
cluster when placing resources and determining the order of some
events.

have-quorum Indicates if the cluster has quorum. If false, this may mean that
the cluster cannot start resources or fence other nodes. See no-
quorum-policy below.

Note that although these fields can be written to by the admin, in most cases the cluster will overwrite
any values specified by the admin with the "correct" ones. To change the admin_epoch, for example,
one would use:

cibadmin --modify --crm_xml '<cib admin_epoch="42"/>'

A complete set of fields will look something like this:

Example 3.1. An example of the fields set for a cib object

<cib have-quorum="true" validate-with="pacemaker-1.0"
 admin_epoch="1" epoch="12" num_updates="65"
 dc-uuid="ea7d39f4-3b94-4cfa-ba7a-952956daabee">

3.5. Cluster Options
Cluster options, as you might expect, control how the cluster behaves when confronted with certain
situations.

They are grouped into sets and, in advanced configurations, there may be more than one. 1 For now
we will describe the simple case where each option is present at most once.

3.6. Available Cluster Options
Table 3.4. Cluster Options

Option Default Description

batch-limit 30 The number of jobs that the TE is allowed to execute
in parallel. The "correct" value will depend on the speed
and load of your network and cluster nodes.

1 This will be described later in the section on Chapter 8, Rules where we will show how to have the cluster use different sets
of options during working hours (when downtime is usually to be avoided at all costs) than it does during the weekends (when
resources can be moved to the their preferred hosts without bothering end users)

Querying and Setting Cluster Options

17

Option Default Description

migration-limit -1
(unlimited)

 The number of migration jobs that the TE is allowed to
execute in parallel on a node.

no-quorum-policy stop What to do when the cluster does not have quorum.
Allowed values:

* ignore - continue all resource management

* freeze - continue resource management, but don’t
recover resources from nodes not in the affected partition

* stop - stop all resources in the affected cluster partition

* suicide - fence all nodes in the affected cluster partition

symmetric-cluster TRUE Can all resources run on any node by default?

stonith-enabled TRUE Should failed nodes and nodes with resources that can’t
be stopped be shot? If you value your data, set up a
STONITH device and enable this.

If true, or unset, the cluster will refuse to start resources
unless one or more STONITH resources have been
configured also.

stonith-action reboot Action to send to STONITH device. Allowed values:
reboot, off. The value poweroff is also allowed, but is only
used for legacy devices.

cluster-delay 60s Round trip delay over the network (excluding action
execution). The "correct" value will depend on the speed
and load of your network and cluster nodes.

stop-orphan-
resources

TRUE Should deleted resources be stopped?

stop-orphan-
actions

TRUE Should deleted actions be cancelled?

start-failure-is-
fatal

TRUE When set to FALSE, the cluster will instead use the
resource’s failcount and value for resource-
failure-stickiness.

pe-error-series-
max

-1 (all) The number of PE inputs resulting in ERRORs to save.
Used when reporting problems.

pe-warn-series-max -1 (all) The number of PE inputs resulting in WARNINGs to
save. Used when reporting problems.

pe-input-series-
max

-1 (all) The number of "normal" PE inputs to save. Used when
reporting problems.

You can always obtain an up-to-date list of cluster options, including their default values, by running
the pengine metadata command.

3.7. Querying and Setting Cluster Options

Cluster options can be queried and modified using the crm_attribute tool. To get the current value
of cluster-delay, simply use:

Chapter 3. Cluster Options

18

crm_attribute --attr-name cluster-delay --get-value

which is more simply written as

crm_attribute --get-value -n cluster-delay

If a value is found, you’ll see a result like this:

crm_attribute --get-value -n cluster-delay
 name=cluster-delay value=60s

However, if no value is found, the tool will display an error:

crm_attribute --get-value -n clusta-deway`
name=clusta-deway value=(null)
Error performing operation: The object/attribute does not exist

To use a different value, eg. 30, simply run:

crm_attribute --attr-name cluster-delay --attr-value 30s

To go back to the cluster’s default value you can delete the value, for example with this command:

crm_attribute --attr-name cluster-delay --delete-attr

3.8. When Options are Listed More Than Once
If you ever see something like the following, it means that the option you’re modifying is present more
than once.

Example 3.2. Deleting an option that is listed twice

crm_attribute --attr-name batch-limit --delete-attr

Multiple attributes match name=batch-limit in crm_config:
Value: 50 (set=cib-bootstrap-options, id=cib-bootstrap-options-batch-limit)
Value: 100 (set=custom, id=custom-batch-limit)
Please choose from one of the matches above and supply the 'id' with --attr-id

In such cases follow the on-screen instructions to perform the requested action. To determine which
value is currently being used by the cluster, please refer to Chapter 8, Rules.

Chapter 4.

19

Cluster Nodes

Table of Contents
4.1. Defining a Cluster Node .. 19
4.2. Where Pacemaker Gets the Node Name ... 19
4.3. Describing a Cluster Node ... 20
4.4. Corosync .. 20

4.4.1. Adding a New Corosync Node .. 20
4.4.2. Removing a Corosync Node ... 21
4.4.3. Replacing a Corosync Node ... 21

4.5. CMAN .. 21
4.5.1. Adding a New CMAN Node .. 21
4.5.2. Removing a CMAN Node ... 21

4.6. Heartbeat .. 22
4.6.1. Adding a New Heartbeat Node ... 22
4.6.2. Removing a Heartbeat Node ... 22
4.6.3. Replacing a Heartbeat Node ... 22

4.1. Defining a Cluster Node
Each node in the cluster will have an entry in the nodes section containing its UUID, uname, and type.

Example 4.1. Example Heartbeat cluster node entry

<node id="1186dc9a-324d-425a-966e-d757e693dc86" uname="pcmk-1" type="normal"/>

Example 4.2. Example Corosync cluster node entry

<node id="101" uname="pcmk-1" type="normal"/>

In normal circumstances, the admin should let the cluster populate this information automatically from
the communications and membership data. However for Heartbeat, one can use the crm_uuid tool to
read an existing UUID or define a value before the cluster starts.

4.2. Where Pacemaker Gets the Node Name
Traditionally, Pacemaker required nodes to be referred to by the value returned by uname -n. This
can be problematic for services that require the uname -n to be a specific value (ie. for a licence file).

Since version 2.0.0 of Pacemaker, this requirement has been relaxed for clusters using Corosync 2.0
or later. The name Pacemaker uses is:

1. The value stored in corosync.conf under ring0_addr in the nodelist, if it does not contain an
IP address; otherwise

2. The value stored in corosync.conf under name in the nodelist; otherwise

3. The value of uname -n

Chapter 4. Cluster Nodes

20

Pacemaker provides the crm_node -n command which displays the name used by a running cluster.

If a Corosync nodelist is used, crm_node --name-for-id $number is also available to display the
name used by the node with the corosync nodeid of $number, for example: crm_node --name-
for-id 2.

4.3. Describing a Cluster Node
 Beyond the basic definition of a node the administrator can also describe the node’s attributes,
such as how much RAM, disk, what OS or kernel version it has, perhaps even its physical location.
This information can then be used by the cluster when deciding where to place resources. For more
information on the use of node attributes, see Chapter 8, Rules.

Node attributes can be specified ahead of time or populated later, when the cluster is running, using
crm_attribute.

Below is what the node’s definition would look like if the admin ran the command:

Example 4.3. The result of using crm_attribute to specify which kernel pcmk-1 is running

crm_attribute --type nodes --node-uname pcmk-1 --attr-name kernel --attr-value `uname -
r`

<node uname="pcmk-1" type="normal" id="101">
 <instance_attributes id="nodes-101">
 <nvpair id="kernel-101" name="kernel" value="2.6.16.46-0.4-default"/>
 </instance_attributes>
</node>

A simpler way to determine the current value of an attribute is to use crm_attribute command
again:

crm_attribute --type nodes --node-uname pcmk-1 --attr-name kernel --get-value

By specifying --type nodes the admin tells the cluster that this attribute is persistent. There are
also transient attributes which are kept in the status section which are "forgotten" whenever the node
rejoins the cluster. The cluster uses this area to store a record of how many times a resource has
failed on that node but administrators can also read and write to this section by specifying --type
status.

4.4. Corosync

4.4.1. Adding a New Corosync Node

Adding a new node is as simple as installing Corosync and Pacemaker, and copying /etc/corosync/
corosync.conf and /etc/corosync/authkey (if it exists) from an existing node. You may need to modify
the mcastaddr option to match the new node’s IP address.

If a log message containing "Invalid digest" appears from Corosync, the keys are not consistent
between the machines.

Removing a Corosync Node

21

4.4.2. Removing a Corosync Node

Because the messaging and membership layers are the authoritative source for cluster nodes,
deleting them from the CIB is not a reliable solution. First one must arrange for corosync to forget
about the node (pcmk-1 in the example below).

On the host to be removed:

1. Stop the cluster: /etc/init.d/corosync stop

Next, from one of the remaining active cluster nodes:

1. Tell Pacemaker to forget about the removed host:

crm_node -R pcmk-1

This includes deleting the node from the CIB

Note

This proceedure only works for versions after 1.1.8

4.4.3. Replacing a Corosync Node

The five-step guide to replacing an existing cluster node:

1. Make sure the old node is completely stopped

2. Give the new machine the same hostname and IP address as the old one

3. Install the cluster software :-)

4. Copy /etc/corosync/corosync.conf and /etc/corosync/authkey (if it exists) to the new node

5. Start the new cluster node

If a log message containing "Invalid digest" appears from Corosync, the keys are not consistent
between the machines.

4.5. CMAN

4.5.1. Adding a New CMAN Node

4.5.2. Removing a CMAN Node

Chapter 4. Cluster Nodes

22

4.6. Heartbeat

4.6.1. Adding a New Heartbeat Node

Provided you specified autojoin any in ha.cf, adding a new node is as simple as installing
heartbeat and copying ha.cf and authkeys from an existing node.

If you don’t want to use autojoin, then after setting up ha.cf and authkeys, you must use
hb_addnode before starting the new node.

4.6.2. Removing a Heartbeat Node

Because the messaging and membership layers are the authoritative source for cluster nodes,
deleting them from the CIB is not a reliable solution.

First one must arrange for Heartbeat to forget about the node (pcmk-1 in the example below).

On the host to be removed:

1. Stop the cluster: /etc/init.d/corosync stop

Next, from one of the remaining active cluster nodes:

1. Tell Heartbeat the node should be removed

hb_delnode pcmk-1

1. Tell Pacemaker to forget about the removed host:

crm_node -R pcmk-1

Note

This proceedure only works for versions after 1.1.8

4.6.3. Replacing a Heartbeat Node
 The seven-step guide to replacing an existing cluster node:

1. Make sure the old node is completely stopped

2. Give the new machine the same hostname as the old one

3. Go to an active cluster node and look up the UUID for the old node in /var/lib/heartbeat/hostcache

4. Install the cluster software

5. Copy ha.cf and authkeys to the new node

Replacing a Heartbeat Node

23

6. On the new node, populate it’s UUID using crm_uuid -w and the UUID from step 2

7. Start the new cluster node

24

Chapter 5.

25

Cluster Resources

Table of Contents
5.1. What is a Cluster Resource ... 25
5.2. Supported Resource Classes .. 25

5.2.1. Open Cluster Framework .. 26
5.2.2. Linux Standard Base .. 26
5.2.3. Systemd ... 27
5.2.4. Upstart ... 27
5.2.5. System Services .. 27
5.2.6. STONITH ... 28

5.3. Resource Properties .. 28
5.4. Resource Options ... 29
5.5. Setting Global Defaults for Resource Options ... 30
5.6. Instance Attributes .. 30
5.7. Resource Operations .. 32

5.7.1. Monitoring Resources for Failure .. 32
5.7.2. Setting Global Defaults for Operations ... 32

5.1. What is a Cluster Resource

The role of a resource agent is to abstract the service it provides and present a consistent view to the
cluster, which allows the cluster to be agnostic about the resources it manages.

The cluster doesn’t need to understand how the resource works because it relies on the resource
agent to do the right thing when given a start, stop or monitor command.

For this reason it is crucial that resource agents are well tested.

Typically resource agents come in the form of shell scripts, however they can be written using any
technology (such as C, Python or Perl) that the author is comfortable with.

5.2. Supported Resource Classes

There are five classes of agents supported by Pacemaker:

• OCF

• LSB

• Upstart

• Systemd

• Fencing

• Service

Chapter 5. Cluster Resources

26

Version 1 of Heartbeat came with its own style of resource agents and it is highly likely that many
people have written their own agents based on its conventions. 1

Although deprecated with the release of Heartbeat v2, they were supported by Pacemaker up until the
release of 1.1.8 to enable administrators to continue to use these agents.

5.2.1. Open Cluster Framework

The OCF standard 2 3 is basically an extension of the Linux Standard Base conventions for init scripts
to:

• support parameters,

• make them self describing and

• extensible

OCF specs have strict definitions of the exit codes that actions must return. 4

The cluster follows these specifications exactly, and giving the wrong exit code will cause the cluster to
behave in ways you will likely find puzzling and annoying. In particular, the cluster needs to distinguish
a completely stopped resource from one which is in some erroneous and indeterminate state.

Parameters are passed to the script as environment variables, with the special prefix OCF_RESKEY_.
So, a parameter which the user thinks of as ip it will be passed to the script as OCF_RESKEY_ip. The
number and purpose of the parameters is completely arbitrary, however your script should advertise
any that it supports using the meta-data command.

The OCF class is the most preferred one as it is an industry standard, highly flexible (allowing
parameters to be passed to agents in a non-positional manner) and self-describing.

For more information, see the reference5 and Appendix B, More About OCF Resource Agents.

5.2.2. Linux Standard Base

LSB resource agents are those found in /etc/init.d.

Generally they are provided by the OS/distribution and, in order to be used with the cluster, they must
conform to the LSB Spec. 6

Many distributions claim LSB compliance but ship with broken init scripts. For details on how to check
if your init script is LSB-compatible, see Appendix G, init-Script LSB Compliance. The most common
problems are:

• Not implementing the status operation at all

1 See http://wiki.linux-ha.org/HeartbeatResourceAgent for more information
2 http://www.opencf.org/cgi-bin/viewcvs.cgi/specs/ra/resource-agent-api.txt?rev=HEAD - at least as it relates to resource agents.
3 The Pacemaker implementation has been somewhat extended from the OCF Specs, but none of those changes are
incompatible with the original OCF specification.
4 Included with the cluster is the ocf-tester script, which can be useful in this regard.
5 http://www.linux-ha.org/wiki/OCF_Resource_Agents
6 See http://refspecs.linux-foundation.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html for the LSB Spec (as
it relates to init scripts).

http://www.linux-ha.org/wiki/OCF_Resource_Agents
http://wiki.linux-ha.org/HeartbeatResourceAgent
http://www.opencf.org/cgi-bin/viewcvs.cgi/specs/ra/resource-agent-api.txt?rev=HEAD
http://www.linux-ha.org/wiki/OCF_Resource_Agents
http://refspecs.linux-foundation.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html

Systemd

27

• Not observing the correct exit status codes for start/stop/status actions

• Starting a started resource returns an error (this violates the LSB spec)

• Stopping a stopped resource returns an error (this violates the LSB spec)

5.2.3. Systemd

Some newer distributions have replaced the old SYS-V7 style of initialization daemons (and scripts)
with an alternative called Systemd8.

Pacemaker is able to manage these services if they are present.

Instead of init scripts, systemd has unit files. Generally the services (or unit files) are
provided by the OS/distribution but there are some instructions for converting from init scripts at:
http://0pointer.de/blog/projects/systemd-for-admins-3.html

Note

Remember to make sure the computer is not configured to start any services at boot time that
should be controlled by the cluster.

5.2.4. Upstart

Some newer distributions have replaced the old SYS-V9 style of initialization daemons (and scripts)
with an alternative called Upstart10.

Pacemaker is able to manage these services if they are present.

Instead of init scripts, upstart has jobs. Generally the services (or jobs) are provided by the OS/
distribution.

Note

Remember to make sure the computer is not configured to start any services at boot time that
should be controlled by the cluster.

5.2.5. System Services

7 http://en.wikipedia.org/wiki/Init#SysV-style
8 http://www.freedesktop.org/wiki/Software/systemd
9 http://en.wikipedia.org/wiki/Init#SysV-style
10 http://upstart.ubuntu.com

http://en.wikipedia.org/wiki/Init#SysV-style
http://www.freedesktop.org/wiki/Software/systemd
http://0pointer.de/blog/projects/systemd-for-admins-3.html
http://en.wikipedia.org/wiki/Init#SysV-style
http://upstart.ubuntu.com
http://en.wikipedia.org/wiki/Init#SysV-style
http://www.freedesktop.org/wiki/Software/systemd
http://en.wikipedia.org/wiki/Init#SysV-style
http://upstart.ubuntu.com

Chapter 5. Cluster Resources

28

Since there are now many "common" types of system services (systemd, upstart, and lsb),
Pacemaker supports a special alias which intelligently figures out which one applies to a given cluster
node.

This is particularly useful when the cluster contains a mix of systemd, upstart, and lsb.

In order, Pacemaker will try to find the named service as:

1. an LSB (SYS-V) init script

2. a Systemd unit file

3. an Upstart job

5.2.6. STONITH

There is also an additional class, STONITH, which is used exclusively for fencing related resources.
This is discussed later in Chapter 13, STONITH.

5.3. Resource Properties
These values tell the cluster which script to use for the resource, where to find that script and what
standards it conforms to.

Table 5.1. Properties of a Primitive Resource

Field Description

id Your name for the resource

class The standard the script conforms to. Allowed values: ocf, service, upstart,
systemd, lsb, stonith

type The name of the Resource Agent you wish to use. Eg. IPaddr or Filesystem

provider The OCF spec allows multiple vendors to supply the same ResourceAgent.
To use the OCF resource agents supplied with Heartbeat, you should specify
heartbeat here.

Resource definitions can be queried with the crm_resource tool. For example

crm_resource --resource Email --query-xml

might produce:

Example 5.1. An example system resource

<primitive id="Email" class="service" type="exim"/>

Note

One of the main drawbacks to system services (such as LSB, Systemd and Upstart) resources is
that they do not allow any parameters!

Resource Options

29

Example 5.2. An example OCF resource

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="1.2.3.4"/>
 </instance_attributes>
</primitive>

5.4. Resource Options
Options are used by the cluster to decide how your resource should behave and can be easily set
using the --meta option of the crm_resource command.

Table 5.2. Options for a Primitive Resource

Field Default Description

priority 0 If not all resources can be active, the cluster will stop lower
priority resources in order to keep higher priority ones active.

target-
role

Started What state should the cluster attempt to keep this resource in?
Allowed values:

* Stopped - Force the resource to be stopped

* Started - Allow the resource to be started (In the case of multi-
state resources, they will not promoted to master)

* Master - Allow the resource to be started and, if appropriate,
promoted

is-managed TRUE Is the cluster allowed to start and stop the resource? Allowed
values: true, false

resource-
stickiness

Calculated How much does the resource prefer to stay where it is?
Defaults to the value of resource-stickiness in the
rsc_defaults section

requires Calculated Under what conditions can the resource be started. (Since
1.1.8)

Defaults to fencing unless stonith-enabled is false or
class is stonith - under those conditions the default is quorum.
Possible values:

* nothing - can always be started

* quorum - The cluster can only start this resource if a majority
of the configured nodes are active

* fencing - The cluster can only start this resource if a majority
of the configured nodes are active and any failed or unknown
nodes have been powered off.

* unfencing - The cluster can only start this resource if a
majority of the configured nodes are active and any failed or
unknown nodes have been powered off and only on nodes that
have been unfenced indexterm: Option[requires,Resource]

Chapter 5. Cluster Resources

30

Field Default Description

migration-
threshold

INFINITY
(disabled)

How many failures may occur for this resource on a node,
before this node is marked ineligible to host this resource.

failure-
timeout

0 (disabled) How many seconds to wait before acting as if the failure had
not occurred, and potentially allowing the resource back to the
node on which it failed.

multiple-
active

stop_start What should the cluster do if it ever finds the resource active on
more than one node. Allowed values:

* block - mark the resource as unmanaged

* stop_only - stop all active instances and leave them that way

* stop_start - stop all active instances and start the resource in
one location only

If you performed the following commands on the previous LSB Email resource

crm_resource --meta --resource Email --set-parameter priority --property-value 100
crm_resource --meta --resource Email --set-parameter multiple-active --property-value block

the resulting resource definition would be

Example 5.3. An LSB resource with cluster options

<primitive id="Email" class="lsb" type="exim">
 <meta_attributes id="meta-email">
 <nvpair id="email-priority" name="priority" value="100"/>
 <nvpair id="email-active" name="multiple-active" value="block"/>
 </meta_attributes>
</primitive>

5.5. Setting Global Defaults for Resource Options
To set a default value for a resource option, simply add it to the rsc_defaults section with
crm_attribute. Thus,

crm_attribute --type rsc_defaults --attr-name is-managed --attr-value false

would prevent the cluster from starting or stopping any of the resources in the configuration (unless of
course the individual resources were specifically enabled and had is-managed set to true).

5.6. Instance Attributes
The scripts of some resource classes (LSB not being one of them) can be given parameters which
determine how they behave and which instance of a service they control.

If your resource agent supports parameters, you can add them with the crm_resource command.
For instance

crm_resource --resource Public-IP --set-parameter ip --property-value 1.2.3.4

would create an entry in the resource like this:

Instance Attributes

31

Example 5.4. An example OCF resource with instance attributes

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="1.2.3.4"/>
 </instance_attributes>
</primitive>

For an OCF resource, the result would be an environment variable called OCF_RESKEY_ip with a
value of 1.2.3.4.

The list of instance attributes supported by an OCF script can be found by calling the resource
script with the meta-data command. The output contains an XML description of all the supported
attributes, their purpose and default values.

Example 5.5. Displaying the metadata for the Dummy resource agent template

export OCF_ROOT=/usr/lib/ocf
$OCF_ROOT/resource.d/pacemaker/Dummy meta-data

<?xml version="1.0"?>
 <!DOCTYPE resource-agent SYSTEM "ra-api-1.dtd">
 <resource-agent name="Dummy" version="0.9">
 <version>1.0</version>

 <longdesc lang="en-US">
 This is a Dummy Resource Agent. It does absolutely nothing except
 keep track of whether its running or not.
 Its purpose in life is for testing and to serve as a template for RA writers.
 </longdesc>
 <shortdesc lang="en-US">Dummy resource agent</shortdesc>

 <parameters>
 <parameter name="state" unique="1">
 <longdesc lang="en-US">
 Location to store the resource state in.
 </longdesc>
 <shortdesc lang="en-US">State file</shortdesc>
 <content type="string" default="/var/run/Dummy-{OCF_RESOURCE_INSTANCE}.state" />
 </parameter>

 <parameter name="dummy" unique="0">
 <longdesc lang="en-US">
 Dummy attribute that can be changed to cause a reload
 </longdesc>
 <shortdesc lang="en-US">Dummy attribute that can be changed to cause a reload</
shortdesc>
 <content type="string" default="blah" />
 </parameter>
 </parameters>

 <actions>
 <action name="start" timeout="90" />
 <action name="stop" timeout="100" />
 <action name="monitor" timeout="20" interval="10",height="0" start-delay="0" />
 <action name="reload" timeout="90" />
 <action name="migrate_to" timeout="100" />
 <action name="migrate_from" timeout="90" />
 <action name="meta-data" timeout="5" />
 <action name="validate-all" timeout="30" />

Chapter 5. Cluster Resources

32

 </actions>
 </resource-agent>

5.7. Resource Operations

5.7.1. Monitoring Resources for Failure
By default, the cluster will not ensure your resources are still healthy. To instruct the cluster to do this,
you need to add a monitor operation to the resource’s definition.

Example 5.6. An OCF resource with a recurring health check

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <operations>
 <op id="public-ip-check" name="monitor" interval="60s"/>
 </operations>
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="1.2.3.4"/>
 </instance_attributes>
</primitive>

Table 5.3. Properties of an Operation

Field Description

id Your name for the action. Must be unique.

name The action to perform. Common values: monitor, start, stop

interval How frequently (in seconds) to perform the operation. Default value: 0, meaning
never.

timeout How long to wait before declaring the action has failed.

on-fail The action to take if this action ever fails. Allowed values:

* ignore - Pretend the resource did not fail

* block - Don’t perform any further operations on the resource

* stop - Stop the resource and do not start it elsewhere

* restart - Stop the resource and start it again (possibly on a different node)

* fence - STONITH the node on which the resource failed

* standby - Move all resources away from the node on which the resource failed

The default for the stop operation is fence when STONITH is enabled and
block otherwise. All other operations default to stop.

enabled If false, the operation is treated as if it does not exist. Allowed values: true,
false

5.7.2. Setting Global Defaults for Operations
To set a default value for a operation option, simply add it to the op_defaults section with
crm_attribute. Thus,

Setting Global Defaults for Operations

33

crm_attribute --type op_defaults --attr-name timeout --attr-value 20s

would default each operation’s timeout to 20 seconds. If an operation’s definition also includes a
value for timeout, then that value would be used instead (for that operation only).

5.7.2.1. When Resources Take a Long Time to Start/Stop
There are a number of implicit operations that the cluster will always perform - start, stop and a
non-recurring monitor operation (used at startup to check the resource isn’t already active). If one of
these is taking too long, then you can create an entry for them and simply specify a new value.

Example 5.7. An OCF resource with custom timeouts for its implicit actions

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <operations>
 <op id="public-ip-startup" name="monitor" interval="0" timeout="90s"/>
 <op id="public-ip-start" name="start" interval="0" timeout="180s"/>
 <op id="public-ip-stop" name="stop" interval="0" timeout="15min"/>
 </operations>
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="1.2.3.4"/>
 </instance_attributes>
</primitive>

5.7.2.2. Multiple Monitor Operations
Provided no two operations (for a single resource) have the same name and interval you can have as
many monitor operations as you like. In this way you can do a superficial health check every minute
and progressively more intense ones at higher intervals.

To tell the resource agent what kind of check to perform, you need to provide each monitor with
a different value for a common parameter. The OCF standard creates a special parameter called
OCF_CHECK_LEVEL for this purpose and dictates that it is "made available to the resource agent
without the normal OCF_RESKEY prefix".

Whatever name you choose, you can specify it by adding an instance_attributes block to the op
tag. Note that it is up to each resource agent to look for the parameter and decide how to use it.

Example 5.8. An OCF resource with two recurring health checks, performing different levels of
checks - specified via OCF_CHECK_LEVEL.

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <operations>
 <op id="public-ip-health-60" name="monitor" interval="60">
 <instance_attributes id="params-public-ip-depth-60">
 <nvpair id="public-ip-depth-60" name="OCF_CHECK_LEVEL" value="10"/>
 </instance_attributes>
 </op>
 <op id="public-ip-health-300" name="monitor" interval="300">
 <instance_attributes id="params-public-ip-depth-300">
 <nvpair id="public-ip-depth-300" name="OCF_CHECK_LEVEL" value="20"/>
 </instance_attributes>
 </op>
 </operations>
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-level" name="ip" value="1.2.3.4"/>
 </instance_attributes>
</primitive>

Chapter 5. Cluster Resources

34

5.7.2.3. Disabling a Monitor Operation
The easiest way to stop a recurring monitor is to just delete it. However, there can be times when you
only want to disable it temporarily. In such cases, simply add enabled="false" to the operation’s
definition.

Example 5.9. Example of an OCF resource with a disabled health check

<primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <operations>
 <op id="public-ip-check" name="monitor" interval="60s" enabled="false"/>
 </operations>
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="1.2.3.4"/>
 </instance_attributes>
</primitive>

This can be achieved from the command-line by executing

cibadmin -M -X '<op id="public-ip-check" enabled="false"/>'

Once you’ve done whatever you needed to do, you can then re-enable it with

Chapter 6.

35

Resource Constraints

Table of Contents
6.1. Scores .. 35

6.1.1. Infinity Math ... 35
6.2. Deciding Which Nodes a Resource Can Run On .. 35

6.2.1. Options .. 36
6.2.2. Asymmetrical "Opt-In" Clusters ... 36
6.2.3. Symmetrical "Opt-Out" Clusters .. 36
6.2.4. What if Two Nodes Have the Same Score ... 37

6.3. Specifying in which Order Resources Should Start/Stop .. 37
6.3.1. Mandatory Ordering .. 38
6.3.2. Advisory Ordering ... 38

6.4. Placing Resources Relative to other Resources .. 38
6.4.1. Options .. 39
6.4.2. Mandatory Placement ... 39
6.4.3. Advisory Placement .. 39

6.5. Ordering Sets of Resources .. 40
6.6. Ordered Set .. 40
6.7. Two Sets of Unordered Resources .. 41
6.8. Three Resources Sets ... 42
6.9. Collocating Sets of Resources ... 42
6.10. Another Three Resources Sets .. 44

6.1. Scores
Scores of all kinds are integral to how the cluster works. Practically everything from moving a resource
to deciding which resource to stop in a degraded cluster is achieved by manipulating scores in some
way.

Scores are calculated on a per-resource basis and any node with a negative score for a resource can’t
run that resource. After calculating the scores for a resource, the cluster then chooses the node with
the highest one.

6.1.1. Infinity Math
INFINITY is currently defined as 1,000,000 and addition/subtraction with it follows these three basic
rules:

• Any value + INFINITY = INFINITY

• Any value - INFINITY = -INFINITY

• INFINITY - INFINITY = -INFINITY

6.2. Deciding Which Nodes a Resource Can Run On
 There are two alternative strategies for specifying which nodes a resources can run on. One way is to
say that by default they can run anywhere and then create location constraints for nodes that are not

Chapter 6. Resource Constraints

36

allowed. The other option is to have nodes "opt-in"… to start with nothing able to run anywhere and
selectively enable allowed nodes.

6.2.1. Options

Table 6.1. Options for Simple Location Constraints

Field Description

id A unique name for the constraint

rsc A resource name

node A node’s name

score Positive values indicate the resource should run on this node.
Negative values indicate the resource should not run on this node.

Values of +/- INFINITY change "should"/"should not" to
"must"/"must not".

6.2.2. Asymmetrical "Opt-In" Clusters

To create an opt-in cluster, start by preventing resources from running anywhere by default:

crm_attribute --attr-name symmetric-cluster --attr-value false

Then start enabling nodes. The following fragment says that the web server prefers sles-1, the
database prefers sles-2 and both can fail over to sles-3 if their most preferred node fails.

Example 6.1. Example set of opt-in location constraints

<constraints>
 <rsc_location id="loc-1" rsc="Webserver" node="sles-1" score="200"/>
 <rsc_location id="loc-2" rsc="Webserver" node="sles-3" score="0"/>
 <rsc_location id="loc-3" rsc="Database" node="sles-2" score="200"/>
 <rsc_location id="loc-4" rsc="Database" node="sles-3" score="0"/>
</constraints>

6.2.3. Symmetrical "Opt-Out" Clusters

To create an opt-out cluster, start by allowing resources to run anywhere by default:

crm_attribute --attr-name symmetric-cluster --attr-value true

Then start disabling nodes. The following fragment is the equivalent of the above opt-in configuration.

Example 6.2. Example set of opt-out location constraints

<constraints>
 <rsc_location id="loc-1" rsc="Webserver" node="sles-1" score="200"/>
 <rsc_location id="loc-2-dont-run" rsc="Webserver" node="sles-2" score="-INFINITY"/>

What if Two Nodes Have the Same Score

37

 <rsc_location id="loc-3-dont-run" rsc="Database" node="sles-1" score="-INFINITY"/>
 <rsc_location id="loc-4" rsc="Database" node="sles-2" score="200"/>
</constraints>

Whether you should choose opt-in or opt-out depends both on your personal preference and the
make-up of your cluster. If most of your resources can run on most of the nodes, then an opt-out
arrangement is likely to result in a simpler configuration. On the other-hand, if most resources can only
run on a small subset of nodes an opt-in configuration might be simpler.

6.2.4. What if Two Nodes Have the Same Score
If two nodes have the same score, then the cluster will choose one. This choice may seem random
and may not be what was intended, however the cluster was not given enough information to know
any better.

Example 6.3. Example of two resources that prefer two nodes equally

<constraints>
 <rsc_location id="loc-1" rsc="Webserver" node="sles-1" score="INFINITY"/>
 <rsc_location id="loc-2" rsc="Webserver" node="sles-2" score="INFINITY"/>
 <rsc_location id="loc-3" rsc="Database" node="sles-1" score="500"/>
 <rsc_location id="loc-4" rsc="Database" node="sles-2" score="300"/>
 <rsc_location id="loc-5" rsc="Database" node="sles-2" score="200"/>
</constraints>

In the example above, assuming no other constraints and an inactive cluster, Webserver would
probably be placed on sles-1 and Database on sles-2. It would likely have placed Webserver based on
the node’s uname and Database based on the desire to spread the resource load evenly across the
cluster. However other factors can also be involved in more complex configurations.

6.3. Specifying in which Order Resources Should Start/
Stop
 The way to specify the order in which resources should start is by creating rsc_order constraints.

Table 6.2. Properties of an Ordering Constraint

Field Description

id A unique name for the constraint

first The name of a resource that must be started before the then
resource is allowed to.

then The name of a resource. This resource will start after the first
resource.

kind How to enforce the constraint. (Since 1.1.2)

* Optional - Just a suggestion. Only applies if both resources are
starting/stopping.

* Mandatory - Always. If first is stopping or cannot be started, then
must be stopped.

* Serialize - Ensure that no two stop/start actions occur
concurrently for a set of resources.

Chapter 6. Resource Constraints

38

Field Description

symmetrical If true, which is the default, stop the resources in the reverse order.
Default value: true

6.3.1. Mandatory Ordering
When the then resource cannot run without the first resource being active, one should use
mandatory constraints. To specify a constraint is mandatory, use scores greater than zero. This will
ensure that the then resource will react when the first resource changes state.

• If the first resource was running and is stopped, the then resource will also be stopped (if it is
running).

• If the first resource was not running and cannot be started, the then resource will be stopped (if
it is running).

• If the first resource is (re)started while the then resource is running, the then resource will be
stopped and restarted.

6.3.2. Advisory Ordering
On the other hand, when score="0" is specified for a constraint, the constraint is considered optional
and only has an effect when both resources are stopping and/or starting. Any change in state by the
first resource will have no effect on the then resource.

Example 6.4. Example of an optional and mandatory ordering constraint

<constraints>
 <rsc_order id="order-1" first="Database" then="Webserver" />
 <rsc_order id="order-2" first="IP" then="Webserver" score="0"/>
</constraints>

Some additional information on ordering constraints can be found in the document Ordering
Explained1.

6.4. Placing Resources Relative to other Resources
 When the location of one resource depends on the location of another one, we call this colocation.

There is an important side-effect of creating a colocation constraint between two resources: it affects
the order in which resources are assigned to a node. If you think about it, it’s somewhat obvious. You
can’t place A relative to B unless you know where B is. 2

So when you are creating colocation constraints, it is important to consider whether you should
colocate A with B or B with A.

Another thing to keep in mind is that, assuming A is collocated with B, the cluster will also take into
account A’s preferences when deciding which node to choose for B.

1 http://www.clusterlabs.org/mediawiki/images/d/d6/Ordering_Explained.pdf
2 While the human brain is sophisticated enough to read the constraint in any order and choose the correct one depending on
the situation, the cluster is not quite so smart. Yet.

http://www.clusterlabs.org/mediawiki/images/d/d6/Ordering_Explained.pdf
http://www.clusterlabs.org/mediawiki/images/d/d6/Ordering_Explained.pdf
http://www.clusterlabs.org/mediawiki/images/d/d6/Ordering_Explained.pdf

Options

39

For a detailed look at exactly how this occurs, see the Colocation Explained3 document.

6.4.1. Options
Table 6.3. Properties of a Collocation Constraint

Field Description

id A unique name for the constraint.

rsc The colocation source. If the constraint cannot be satisfied, the
cluster may decide not to allow the resource to run at all.

with-rsc The colocation target. The cluster will decide where to put this
resource first and then decide where to put the resource in the rsc
field.

score Positive values indicate the resource should run on the same node.
Negative values indicate the resources should not run on the same
node. Values of +/- INFINITY change "should" to "must".

6.4.2. Mandatory Placement
Mandatory placement occurs any time the constraint’s score is +INFINITY or -INFINITY. In
such cases, if the constraint can’t be satisfied, then the rsc resource is not permitted to run. For
score=INFINITY, this includes cases where the with-rsc resource is not active.

If you need resource1 to always run on the same machine as resource2, you would add the
following constraint:

An example colocation constraint

<rsc_colocation id="colocate" rsc="resource1" with-rsc="resource2" score="INFINITY"/>

Remember, because INFINITY was used, if resource2 can’t run on any of the cluster nodes (for
whatever reason) then resource1 will not be allowed to run.

Alternatively, you may want the opposite… that resource1 cannot run on the same machine as
resource2. In this case use score="-INFINITY"

An example anti-colocation constraint

<rsc_colocation id="anti-colocate" rsc="resource1" with-rsc="resource2" score="-INFINITY"/>

Again, by specifying -INFINTY, the constraint is binding. So if the only place left to run is where
resource2 already is, then resource1 may not run anywhere.

6.4.3. Advisory Placement
If mandatory placement is about "must" and "must not", then advisory placement is the "I’d prefer if"
alternative. For constraints with scores greater than -INFINITY and less than INFINITY, the cluster
will try and accommodate your wishes but may ignore them if the alternative is to stop some of the
cluster resources.

3 http://www.clusterlabs.org/mediawiki/images/6/61/Colocation_Explained.pdf

http://www.clusterlabs.org/mediawiki/images/6/61/Colocation_Explained.pdf
http://www.clusterlabs.org/mediawiki/images/6/61/Colocation_Explained.pdf

Chapter 6. Resource Constraints

40

Like in life, where if enough people prefer something it effectively becomes mandatory, advisory
colocation constraints can combine with other elements of the configuration to behave as if they were
mandatory.

An example advisory-only colocation constraint

<rsc_colocation id="colocate-maybe" rsc="resource1" with-rsc="resource2" score="500"/>

6.5. Ordering Sets of Resources
A common situation is for an administrator to create a chain of ordered resources, such as:

Example 6.5. A chain of ordered resources

<constraints>
 <rsc_order id="order-1" first="A" then="B" />
 <rsc_order id="order-2" first="B" then="C" />
 <rsc_order id="order-3" first="C" then="D" />
</constraints>

6.6. Ordered Set

Figure 6.1. Visual representation of the four resources' start order for the above constraints

To simplify this situation, there is an alternate format for ordering constraints:

Example 6.6. A chain of ordered resources expressed as a set

<constraints>
 <rsc_order id="order-1">
 <resource_set id="ordered-set-example" sequential="true">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 </resource_set>
 </rsc_order>
</constraints>

Note

Resource sets have the same ordering semantics as groups.

Two Sets of Unordered Resources

41

Example 6.7. A group resource with the equivalent ordering rules

<group id="dummy">
 <primitive id="A" .../>
 <primitive id="B" .../>
 <primitive id="C" .../>
 <primitive id="D" .../>
</group>

While the set-based format is not less verbose, it is significantly easier to get right and maintain. It can
also be expanded to allow ordered sets of (un)ordered resources. In the example below, rscA and
rscB can both start in parallel, as can rscC and rscD, however rscC and rscD can only start once
both rscA and rscB are active.

Example 6.8. Ordered sets of unordered resources

<constraints>
 <rsc_order id="order-1">
 <resource_set id="ordered-set-1" sequential="false">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 </resource_set>
 <resource_set id="ordered-set-2" sequential="false">
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 </resource_set>
 </rsc_order>
 </constraints>

6.7. Two Sets of Unordered Resources

Figure 6.2. Visual representation of the start order for two ordered sets of unordered resources

Of course either set — or both sets — of resources can also be internally ordered (by setting
sequential="true") and there is no limit to the number of sets that can be specified.

Chapter 6. Resource Constraints

42

Example 6.9. Advanced use of set ordering - Three ordered sets, two of which are internally
unordered

<constraints>
 <rsc_order id="order-1">
 <resource_set id="ordered-set-1" sequential="false">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 </resource_set>
 <resource_set id="ordered-set-2" sequential="true">
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 </resource_set>
 <resource_set id="ordered-set-3" sequential="false">
 <resource_ref id="E"/>
 <resource_ref id="F"/>
 </resource_set>
 </rsc_order>
</constraints>

6.8. Three Resources Sets

Figure 6.3. Visual representation of the start order for the three sets defined above

6.9. Collocating Sets of Resources
Another common situation is for an administrator to create a set of collocated resources. Previously
this was possible either by defining a resource group (See Section 10.1, “Groups - A Syntactic
Shortcut”) which could not always accurately express the design; or by defining each relationship as
an individual constraint, causing a constraint explosion as the number of resources and combinations
grew.

Example 6.10. A chain of collocated resources

<constraints>
 <rsc_colocation id="coloc-1" rsc="B" with-rsc="A" score="INFINITY"/>
 <rsc_colocation id="coloc-2" rsc="C" with-rsc="B" score="INFINITY"/>
 <rsc_colocation id="coloc-3" rsc="D" with-rsc="C" score="INFINITY"/>
</constraints>

To make things easier, we allow an alternate form of colocation constraints using resource_sets.
Just like the expanded version, a resource that can’t be active also prevents any resource that must

Collocating Sets of Resources

43

be collocated with it from being active. For example, if B was not able to run, then both C (+and by
inference +D) must also remain stopped.

Example 6.11. The equivalent colocation chain expressed using resource_sets

<constraints>
 <rsc_colocation id="coloc-1" score="INFINITY" >
 <resource_set id="collocated-set-example" sequential="true">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 </resource_set>
 </rsc_colocation>
</constraints>

Note

Resource sets have the same colocation semantics as groups.

A group resource with the equivalent colocation rules

<group id="dummy">
 <primitive id="A" .../>
 <primitive id="B" .../>
 <primitive id="C" .../>
 <primitive id="D" .../>
</group>

This notation can also be used in this context to tell the cluster that a set of resources must all be
located with a common peer, but have no dependencies on each other. In this scenario, unlike the
previous, B would be allowed to remain active even if A or C (or both) were inactive.

Example 6.12. Using colocation sets to specify a common peer.

<constraints>
 <rsc_colocation id="coloc-1" score="INFINITY" >
 <resource_set id="collocated-set-1" sequential="false">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 <resource_ref id="C"/>
 </resource_set>
 <resource_set id="collocated-set-2" sequential="true">
 <resource_ref id="D"/>
 </resource_set>
 </rsc_colocation>
</constraints>

Of course there is no limit to the number and size of the sets used. The only thing that matters is that
in order for any member of set N to be active, all the members of set N+1 must also be active (and
naturally on the same node); and if a set has sequential="true", then in order for member M to
be active, member M+1 must also be active. You can even specify the role in which the members of a
set must be in using the set’s role attribute.

Chapter 6. Resource Constraints

44

Example 6.13. A colocation chain where the members of the middle set have no inter-dependencies
and the last has master status.

<constraints>
 <rsc_colocation id="coloc-1" score="INFINITY" >
 <resource_set id="collocated-set-1" sequential="true">
 <resource_ref id="A"/>
 <resource_ref id="B"/>
 </resource_set>
 <resource_set id="collocated-set-2" sequential="false">
 <resource_ref id="C"/>
 <resource_ref id="D"/>
 <resource_ref id="E"/>
 </resource_set>
 <resource_set id="collocated-set-2" sequential="true" role="Master">
 <resource_ref id="F"/>
 <resource_ref id="G"/>
 </resource_set>
 </rsc_colocation>
</constraints>

6.10. Another Three Resources Sets

Figure 6.4. Visual representation of a colocation chain where the members of the middle set have no
inter-dependencies

Chapter 7.

45

Receiving Notification for Cluster
Events

Table of Contents
7.1. Configuring SNMP Notifications ... 45
7.2. Configuring Email Notifications .. 45
7.3. Configuring Notifications via External-Agent ... 46

A Pacemaker cluster is an event driven system. In this context, an event is a resource failure or
configuration change (not exhaustive).

The ocf:pacemaker:ClusterMon resource can monitor the cluster status and triggers alerts on
each cluster event. This resource runs crm_mon in the background at regular intervals (configurable)
and uses crm_mon capabilities to send emails (SMTP), SNMP traps or to execute an external
program via the extra_options parameter.

Note

Depending on your system settings and compilation settings, SNMP or email alerts might be
unavailable. Check crm_mon --help output to see if these options are available to you. In any
case, executing an external agent will always be available, and you can have this agent to send
emails, SNMP traps, or whatever action you develop.

7.1. Configuring SNMP Notifications

Requires an IP to send SNMP traps to, and a SNMP community. Pacemaker MIB is found in /usr/
share/snmp/mibs/PCMK-MIB.txt

Example 7.1. Configuring ClusterMon to send SNMP traps

<clone id="ClusterMon-clone">
 <primitive class="ocf" id="ClusterMon-SNMP" provider="pacemaker" type="ClusterMon">
 <instance_attributes id="ClusterMon-instance_attributes">
 <nvpair id="ClusterMon-instance_attributes-user" name="user" value="root"/>
 <nvpair id="ClusterMon-instance_attributes-update" name="update" value="30"/>
 <nvpair id="ClusterMon-instance_attributes-extra_options" name="extra_options"
 value="-S snmphost.example.com -C public"/>
 </instance_attributes>
 </primitive>
</clone>

7.2. Configuring Email Notifications

Chapter 7. Receiving Notification for Cluster Events

46

Requires a user to send mail alerts to. "Mail-From", SMTP relay and Subject prefix can also be
configured.

Example 7.2. Configuring ClusterMon to send email alerts

<clone id="ClusterMon-clone">
 <primitive class="ocf" id="ClusterMon-SMTP" provider="pacemaker" type="ClusterMon">
 <instance_attributes id="ClusterMon-instance_attributes">
 <nvpair id="ClusterMon-instance_attributes-user" name="user" value="root"/>
 <nvpair id="ClusterMon-instance_attributes-update" name="update" value="30"/>
 <nvpair id="ClusterMon-instance_attributes-extra_options" name="extra_options"
 value="-T pacemaker@example.com -F pacemaker@node2.example.com -P PACEMAKER -H
 mail.example.com"/>
 </instance_attributes>
 </primitive>
</clone>

7.3. Configuring Notifications via External-Agent
Requires a program (external-agent) to run when resource operations take place, and an external-
recipient (IP address, Email address, URI). When triggered, the external-agent is fed with dynamically
filled environnement variables describing precisely the cluster event that occurred. By making smart
usage of these variables in your external-agent code, you can trigger any action.

Example 7.3. Configuring ClusterMon to execute an external-agent

<clone id="ClusterMon-clone">
 <primitive class="ocf" id="ClusterMon" provider="pacemaker" type="ClusterMon">
 <instance_attributes id="ClusterMon-instance_attributes">
 <nvpair id="ClusterMon-instance_attributes-user" name="user" value="root"/>
 <nvpair id="ClusterMon-instance_attributes-update" name="update" value="30"/>
 <nvpair id="ClusterMon-instance_attributes-extra_options" name="extra_options"
 value="-E /usr/local/bin/example.sh -e 192.168.12.1"/>
 </instance_attributes>
 </primitive>
</clone>

Table 7.1. Environment Variables Passed to the External Agent

Environment Variable Description

CRM_notify_recipient The static external-recipient from the resource definition.

CRM_notify_node The node on which the status change happened.

CRM_notify_rsc The name of the resource that changed the status.

CRM_notify_task The operation that caused the status change.

CRM_notify_desc The textual output relevant error code of the operation (if any)
that caused the status change.

CRM_notify_rc The return code of the operation.

CRM_notify_target_rc The expected return code of the operation.

CRM_notify_status The numerical representation of the status of the operation.

Chapter 8.

47

Rules

Table of Contents
8.1. Node Attribute Expressions ... 47
8.2. Time/Date Based Expressions ... 48

8.2.1. Date Specifications ... 49
8.2.2. Durations ... 49

8.3. Sample Time Based Expressions .. 49
8.4. Using Rules to Determine Resource Location ... 51

8.4.1. Using score-attribute Instead of score ... 52
8.5. Using Rules to Control Resource Options .. 52
8.6. Using Rules to Control Cluster Options .. 53
8.7. Ensuring Time Based Rules Take Effect .. 53

Rules can be used to make your configuration more dynamic. One common example is to set one
value for resource-stickiness during working hours, to prevent resources from being moved
back to their most preferred location, and another on weekends when no-one is around to notice an
outage.

Another use of rules might be to assign machines to different processing groups (using a node
attribute) based on time and to then use that attribute when creating location constraints.

Each rule can contain a number of expressions, date-expressions and even other rules. The results of
the expressions are combined based on the rule’s boolean-op field to determine if the rule ultimately
evaluates to true or false. What happens next depends on the context in which the rule is being
used.

Table 8.1. Properties of a Rule

Field Description

role Limits the rule to apply only when the resource is in that role.
Allowed values: Started, Slave, and Master. NOTE: A rule with
role="Master" can not determine the initial location of a clone
instance. It will only affect which of the active instances will be
promoted.

score The score to apply if the rule evaluates to true. Limited to use in
rules that are part of location constraints.

score-attribute The node attribute to look up and use as a score if the rule
evaluates to true. Limited to use in rules that are part of location
constraints.

boolean-op How to combine the result of multiple expression objects. Allowed
values: and and or.

8.1. Node Attribute Expressions

Expression objects are used to control a resource based on the attributes defined by a node or nodes.
In addition to any attributes added by the administrator, each node has a built-in node attribute called
#uname that can also be used.

Chapter 8. Rules

48

Table 8.2. Properties of an Expression

Field Description

value User supplied value for comparison

attribute The node attribute to test

type Determines how the value(s) should be tested. Allowed values:
string, integer, version

operation The comparison to perform. Allowed values:

* lt - True if the node attribute’s value is less than value

* gt - True if the node attribute’s value is greater than value

* lte - True if the node attribute’s value is less than or equal to
value

* gte - True if the node attribute’s value is greater than or equal to
value

* eq - True if the node attribute’s value is equal to value

* ne - True if the node attribute’s value is not equal to value

* defined - True if the node has the named attribute

* not_defined - True if the node does not have the named attribute

8.2. Time/Date Based Expressions

As the name suggests, date_expressions are used to control a resource or cluster option
based on the current date/time. They can contain an optional date_spec and/or duration object
depending on the context.

Table 8.3. Properties of a Date Expression

Field Description

start A date/time conforming to the ISO8601 specification.

end A date/time conforming to the ISO8601 specification. Can be
inferred by supplying a value for start and a duration.

operation Compares the current date/time with the start and/or end date,
depending on the context. Allowed values:

* gt - True if the current date/time is after start

* lt - True if the current date/time is before end

* in-range - True if the current date/time is after start and before
end

* date-spec - performs a cron-like comparison to the current date/
time

Date Specifications

49

Note

As these comparisons (except for date_spec) include the time, the eq, neq, gte and lte
operators have not been implemented since they would only be valid for a single second.

8.2.1. Date Specifications

date_spec objects are used to create cron-like expressions relating to time. Each field can contain a
single number or a single range. Instead of defaulting to zero, any field not supplied is ignored.

For example, monthdays="1" matches the first day of every month and hours="09-17"
matches the hours between 9am and 5pm (inclusive). However, at this time one cannot specify
weekdays="1,2" or weekdays="1-2,5-6" since they contain multiple ranges. Depending on
demand, this may be implemented in a future release.

Table 8.4. Properties of a Date Spec

Field Description

id A unique name for the date

hours Allowed values: 0-23

monthdays Allowed values: 0-31 (depending on month and year)

weekdays Allowed values: 1-7 (1=Monday, 7=Sunday)

yeardays Allowed values: 1-366 (depending on the year)

months Allowed values: 1-12

weeks Allowed values: 1-53 (depending on weekyear)

years Year according the Gregorian calendar

weekyears May differ from Gregorian years; Eg. 2005-001 Ordinal is also
2005-01-01 Gregorian is also 2004-W53-6 Weekly

moon Allowed values: 0-7 (0 is new, 4 is full moon). Seriously, you can
use this. This was implemented to demonstrate the ease with
which new comparisons could be added.

8.2.2. Durations

Durations are used to calculate a value for end when one is not supplied to in_range operations. They
contain the same fields as date_spec objects but without the limitations (ie. you can have a duration
of 19 months). Like date_specs, any field not supplied is ignored.

8.3. Sample Time Based Expressions
A small sample of how time based expressions can be used.

Example 8.1. True if now is any time in the year 2005

<rule id="rule1">

Chapter 8. Rules

50

 <date_expression id="date_expr1" start="2005-001" operation="in_range">
 <duration years="1"/>
 </date_expression>
</rule>

Example 8.2. Equivalent expression

<rule id="rule2">
 <date_expression id="date_expr2" operation="date_spec">
 <date_spec years="2005"/>
 </date_expression>
</rule>

Example 8.3. 9am-5pm, Mon-Friday

<rule id="rule3">
 <date_expression id="date_expr3" operation="date_spec">
 <date_spec hours="9-16" days="1-5"/>
 </date_expression>
</rule>

Please note that the 16 matches up to 16:59:59, as the numeric value (hour) still matches!

Example 8.4. 9am-6pm, Mon-Friday, or all day saturday

<rule id="rule4" boolean_op="or">
 <date_expression id="date_expr4-1" operation="date_spec">
 <date_spec hours="9-16" days="1-5"/>
 </date_expression>
 <date_expression id="date_expr4-2" operation="date_spec">
 <date_spec days="6"/>
 </date_expression>
</rule>

Example 8.5. 9am-5pm or 9pm-12pm, Mon-Friday

<rule id="rule5" boolean_op="and">
 <rule id="rule5-nested1" boolean_op="or">
 <date_expression id="date_expr5-1" operation="date_spec">
 <date_spec hours="9-16"/>
 </date_expression>
 <date_expression id="date_expr5-2" operation="date_spec">
 <date_spec hours="21-23"/>
 </date_expression>
 </rule>
 <date_expression id="date_expr5-3" operation="date_spec">
 <date_spec days="1-5"/>
 </date_expression>
 </rule>

Example 8.6. Mondays in March 2005

<rule id="rule6" boolean_op="and">
 <date_expression id="date_expr6-1" operation="date_spec">
 <date_spec weekdays="1"/>

Using Rules to Determine Resource Location

51

 </date_expression>
 <date_expression id="date_expr6-2" operation="in_range"
 start="2005-03-01" end="2005-04-01"/>
 </rule>

Note

Because no time is specified, 00:00:00 is implied.

This means that the range includes all of 2005-03-01 but none of 2005-04-01. You may wish to
write end="2005-03-31T23:59:59" to avoid confusion.

Example 8.7. A full moon on Friday the 13th

<rule id="rule7" boolean_op="and">
 <date_expression id="date_expr7" operation="date_spec">
 <date_spec weekdays="5" monthdays="13" moon="4"/>
 </date_expression>
</rule>

8.4. Using Rules to Determine Resource Location

If the constraint’s outer-most rule evaluates to false, the cluster treats the constraint as if it was not
there. When the rule evaluates to true, the node’s preference for running the resource is updated
with the score associated with the rule.

If this sounds familiar, its because you have been using a simplified syntax for location constraint rules
already. Consider the following location constraint:

Example 8.8. Prevent myApacheRsc from running on c001n03

<rsc_location id="dont-run-apache-on-c001n03" rsc="myApacheRsc"
 score="-INFINITY" node="c001n03"/>

This constraint can be more verbosely written as:

Example 8.9. Prevent myApacheRsc from running on c001n03 - expanded version

<rsc_location id="dont-run-apache-on-c001n03" rsc="myApacheRsc">
 <rule id="dont-run-apache-rule" score="-INFINITY">
 <expression id="dont-run-apache-expr" attribute="#uname"
 operation="eq" value="c00n03"/>
 </rule>
</rsc_location>

The advantage of using the expanded form is that one can then add extra clauses to the rule, such
as limiting the rule such that it only applies during certain times of the day or days of the week (this is
discussed in subsequent sections).

Chapter 8. Rules

52

It also allows us to match on node properties other than its name. If we rated each machine’s CPU
power such that the cluster had the following nodes section:

Example 8.10. A sample nodes section for use with score-attribute

<nodes>
 <node id="uuid1" uname="c001n01" type="normal">
 <instance_attributes id="uuid1-custom_attrs">
 <nvpair id="uuid1-cpu_mips" name="cpu_mips" value="1234"/>
 </instance_attributes>
 </node>
 <node id="uuid2" uname="c001n02" type="normal">
 <instance_attributes id="uuid2-custom_attrs">
 <nvpair id="uuid2-cpu_mips" name="cpu_mips" value="5678"/>
 </instance_attributes>
 </node>
</nodes>

then we could prevent resources from running on underpowered machines with the rule

<rule id="need-more-power-rule" score="-INFINITY">
 <expression id=" need-more-power-expr" attribute="cpu_mips"
 operation="lt" value="3000"/>
</rule>

8.4.1. Using score-attribute Instead of score
When using score-attribute instead of score, each node matched by the rule has its score
adjusted differently, according to its value for the named node attribute. Thus, in the previous example,
if a rule used score-attribute="cpu_mips", c001n01 would have its preference to run the
resource increased by 1234 whereas c001n02 would have its preference increased by 5678.

8.5. Using Rules to Control Resource Options
Often some cluster nodes will be different from their peers; sometimes these differences (the
location of a binary or the names of network interfaces) require resources to be configured differently
depending on the machine they’re hosted on.

By defining multiple instance_attributes objects for the resource and adding a rule to each, we
can easily handle these special cases.

In the example below, mySpecialRsc will use eth1 and port 9999 when run on node1, eth2 and port
8888 on node2 and default to eth0 and port 9999 for all other nodes.

Example 8.11. Defining different resource options based on the node name

<primitive id="mySpecialRsc" class="ocf" type="Special" provider="me">
 <instance_attributes id="special-node1" score="3">
 <rule id="node1-special-case" score="INFINITY" >
 <expression id="node1-special-case-expr" attribute="#uname"
 operation="eq" value="node1"/>
 </rule>
 <nvpair id="node1-interface" name="interface" value="eth1"/>
 </instance_attributes>
 <instance_attributes id="special-node2" score="2" >
 <rule id="node2-special-case" score="INFINITY">
 <expression id="node2-special-case-expr" attribute="#uname"
 operation="eq" value="node2"/>

Using Rules to Control Cluster Options

53

 </rule>
 <nvpair id="node2-interface" name="interface" value="eth2"/>
 <nvpair id="node2-port" name="port" value="8888"/>
 </instance_attributes>
 <instance_attributes id="defaults" score="1" >
 <nvpair id="default-interface" name="interface" value="eth0"/>
 <nvpair id="default-port" name="port" value="9999"/>
 </instance_attributes>
</primitive>

The order in which instance_attributes objects are evaluated is determined by their score
(highest to lowest). If not supplied, score defaults to zero and objects with an equal score are
processed in listed order. If the instance_attributes object does not have a rule or has a
rule that evaluates to true, then for any parameter the resource does not yet have a value for, the
resource will use the parameter values defined by the instance_attributes object.

8.6. Using Rules to Control Cluster Options

Controlling cluster options is achieved in much the same manner as specifying different resource
options on different nodes.

The difference is that because they are cluster options, one cannot (or should not, because
they won’t work) use attribute based expressions. The following example illustrates how to set a
different resource-stickiness value during and outside of work hours. This allows resources to
automatically move back to their most preferred hosts, but at a time that (in theory) does not interfere
with business activities.

Example 8.12. Change resource-stickiness during working hours

<rsc_defaults>
 <meta_attributes id="core-hours" score="2">
 <rule id="core-hour-rule" score="0">
 <date_expression id="nine-to-five-Mon-to-Fri" operation="date_spec">
 <date_spec id="nine-to-five-Mon-to-Fri-spec" hours="9-16" weekdays="1-5"/>
 </date_expression>
 </rule>
 <nvpair id="core-stickiness" name="resource-stickiness" value="INFINITY"/>
 </meta_attributes>
 <meta_attributes id="after-hours" score="1" >
 <nvpair id="after-stickiness" name="resource-stickiness" value="0"/>
 </meta_attributes>
</rsc_defaults>

8.7. Ensuring Time Based Rules Take Effect
A Pacemaker cluster is an event driven system. As such, it won’t recalculate the best place for
resources to run in unless something (like a resource failure or configuration change) happens. This
can mean that a location constraint that only allows resource X to run between 9am and 5pm is not
enforced.

If you rely on time based rules, it is essential that you set the cluster-recheck-interval option.
This tells the cluster to periodically recalculate the ideal state of the cluster. For example, if you set
cluster-recheck-interval=5m, then sometime between 9:00 and 9:05 the cluster would notice
that it needs to start resource X, and between 17:00 and 17:05 it would realize that X needed to be
stopped.

Chapter 8. Rules

54

Note that the timing of the actual start and stop actions depends on what else needs to be performed
first .

Chapter 9.

55

Advanced Configuration

Table of Contents
9.1. Connecting from a Remote Machine .. 55
9.2. Specifying When Recurring Actions are Performed ... 56
9.3. Moving Resources .. 56

9.3.1. Manual Intervention .. 56
9.3.2. Moving Resources Due to Failure ... 58
9.3.3. Moving Resources Due to Connectivity Changes ... 58
9.3.4. Resource Migration .. 61

9.4. Reusing Rules, Options and Sets of Operations ... 62
9.5. Reloading Services After a Definition Change .. 63

9.1. Connecting from a Remote Machine

Provided Pacemaker is installed on a machine, it is possible to connect to the cluster even if the
machine itself is not in the same cluster. To do this, one simply sets up a number of environment
variables and runs the same commands as when working on a cluster node.

Table 9.1. Environment Variables Used to Connect to Remote Instances of the CIB

Environment Variable Description

CIB_user The user to connect as. Needs to be part of the hacluster
group on the target host. Defaults to $USER.

CIB_passwd The user’s password. Read from the command line if unset.

CIB_server The host to contact. Defaults to localhost.

CIB_port The port on which to contact the server; required.

CIB_encrypted Encrypt network traffic; defaults to true.

So, if c001n01 is an active cluster node and is listening on 1234 for connections, and someguy is
a member of the hacluster group, then the following would prompt for someguy's password and
return the cluster’s current configuration:

export CIB_port=1234; export CIB_server=c001n01; export CIB_user=someguy;
cibadmin -Q

For security reasons, the cluster does not listen for remote connections by default. If you wish to
allow remote access, you need to set the remote-tls-port (encrypted) or remote-clear-port
(unencrypted) top-level options (ie., those kept in the cib tag, like num_updates and epoch).

Table 9.2. Extra top-level CIB options for remote access

Field Description

remote-tls-port Listen for encrypted remote connections on this port. Default:
none

remote-clear-port Listen for plaintext remote connections on this port. Default:
none

Chapter 9. Advanced Configuration

56

9.2. Specifying When Recurring Actions are Performed
By default, recurring actions are scheduled relative to when the resource started. So if your resource
was last started at 14:32 and you have a backup set to be performed every 24 hours, then the backup
will always run at in the middle of the business day - hardly desirable.

To specify a date/time that the operation should be relative to, set the operation’s interval-origin.
The cluster uses this point to calculate the correct start-delay such that the operation will occur at
origin + (interval * N).

So, if the operation’s interval is 24h, it’s interval-origin is set to 02:00 and it is currently 14:32, then
the cluster would initiate the operation with a start delay of 11 hours and 28 minutes. If the resource is
moved to another node before 2am, then the operation is of course cancelled.

The value specified for interval and interval-origin can be any date/time conforming to the
ISO8601 standard1. By way of example, to specify an operation that would run on the first Monday of
2009 and every Monday after that you would add:

Example 9.1. Specifying a Base for Recurring Action Intervals

<op id="my-weekly-action" name="custom-action" interval="P7D" interval-origin="2009-
W01-1"/>

9.3. Moving Resources

9.3.1. Manual Intervention
There are primarily two occasions when you would want to move a resource from it’s current location:
when the whole node is under maintenance, and when a single resource needs to be moved.

Since everything eventually comes down to a score, you could create constraints for every resource
to prevent them from running on one node. While the configuration can seem convoluted at times, not
even we would require this of administrators.

Instead one can set a special node attribute which tells the cluster "don’t let anything run here". There
is even a helpful tool to help query and set it, called crm_standby. To check the standby status of the
current machine, simply run:

crm_standby --get-value

A value of true indicates that the node is NOT able to host any resources, while a value of false
says that it CAN.

You can also check the status of other nodes in the cluster by specifying the --node-uname option:

crm_standby --get-value --node-uname sles-2

To change the current node’s standby status, use --attr-value instead of --get-value.

crm_standby --attr-value

1 http://en.wikipedia.org/wiki/ISO_8601

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601

Manual Intervention

57

Again, you can change another host’s value by supplying a host name with --node-uname.

When only one resource is required to move, we do this by creating location constraints. However,
once again we provide a user friendly shortcut as part of the crm_resource command, which creates
and modifies the extra constraints for you. If Email was running on sles-1 and you wanted it moved
to a specific location, the command would look something like:

crm_resource -M -r Email -H sles-2

Behind the scenes, the tool will create the following location constraint:

<rsc_location rsc="Email" node="sles-2" score="INFINITY"/>

It is important to note that subsequent invocations of crm_resource -M are not cumulative. So, if
you ran these commands

crm_resource -M -r Email -H sles-2
crm_resource -M -r Email -H sles-3

then it is as if you had never performed the first command.

To allow the resource to move back again, use:

crm_resource -U -r Email

Note the use of the word allow. The resource can move back to its original location but, depending
on resource-stickiness, it might stay where it is. To be absolutely certain that it moves back to
sles-1, move it there before issuing the call to crm_resource -U:

crm_resource -M -r Email -H sles-1
crm_resource -U -r Email

Alternatively, if you only care that the resource should be moved from its current location, try

crm_resource -M -r Email`

Which will instead create a negative constraint, like

<rsc_location rsc="Email" node="sles-1" score="-INFINITY"/>

This will achieve the desired effect, but will also have long-term consequences. As the tool will warn
you, the creation of a -INFINITY constraint will prevent the resource from running on that node until
crm_resource -U is used. This includes the situation where every other cluster node is no longer
available!

In some cases, such as when resource-stickiness is set to INFINITY, it is possible that you will
end up with the problem described in Section 6.2.4, “What if Two Nodes Have the Same Score”. The
tool can detect some of these cases and deals with them by also creating both a positive and negative
constraint. Eg.

Email prefers sles-1 with a score of -INFINITY

Email prefers sles-2 with a score of INFINITY

which has the same long-term consequences as discussed earlier.

Chapter 9. Advanced Configuration

58

9.3.2. Moving Resources Due to Failure
New in 1.0 is the concept of a migration threshold. 2

Simply define migration-threshold=N for a resource and it will migrate to a new node after N
failures. There is no threshold defined by default. To determine the resource’s current failure status
and limits, use crm_mon --failcounts.

By default, once the threshold has been reached, this node will no longer be allowed to run the failed
resource until the administrator manually resets the resource’s failcount using crm_failcount (after
hopefully first fixing the failure’s cause). However it is possible to expire them by setting the resource’s
failure-timeout option.

So a setting of migration-threshold=2 and failure-timeout=60s would cause the resource
to move to a new node after 2 failures, and allow it to move back (depending on the stickiness and
constraint scores) after one minute.

There are two exceptions to the migration threshold concept; they occur when a resource either fails
to start or fails to stop. Start failures cause the failcount to be set to INFINITY and thus always cause
the resource to move immediately.

Stop failures are slightly different and crucial. If a resource fails to stop and STONITH is enabled, then
the cluster will fence the node in order to be able to start the resource elsewhere. If STONITH is not
enabled, then the cluster has no way to continue and will not try to start the resource elsewhere, but
will try to stop it again after the failure timeout.

Important

Please read Section 8.7, “Ensuring Time Based Rules Take Effect” before enabling this option.

9.3.3. Moving Resources Due to Connectivity Changes
Setting up the cluster to move resources when external connectivity is lost is a two-step process.

9.3.3.1. Tell Pacemaker to monitor connectivity
To do this, you need to add a ping resource to the cluster. The ping resource uses the system utility
of the same name to a test if list of machines (specified by DNS hostname or IPv4/IPv6 address) are
reachable and uses the results to maintain a node attribute normally called pingd. 3

Note

Older versions of Heartbeat required users to add ping nodes to ha.cf - this is no longer required.

2 The naming of this option was perhaps unfortunate as it is easily confused with true migration, the process of moving a
resource from one node to another without stopping it. Xen virtual guests are the most common example of resources that can
be migrated in this manner.
3 The attribute name is customizable; that allows multiple ping groups to be defined.

Moving Resources Due to Connectivity Changes

59

Important

Older versions of Pacemaker used a custom binary called pingd for this functionality; this is now
deprecated in favor of ping.

If your version of Pacemaker does not contain the ping agent, you can download the latest
version from https://github.com/ClusterLabs/pacemaker/tree/master/extra/resources/ping

Normally the resource will run on all cluster nodes, which means that you’ll need to create a clone. A
template for this can be found below along with a description of the most interesting parameters.

Table 9.3. Common Options for a ping Resource

Field Description

dampen The time to wait (dampening) for further changes to occur. Use this to
prevent a resource from bouncing around the cluster when cluster nodes
notice the loss of connectivity at slightly different times.

multiplier The number of connected ping nodes gets multiplied by this value to get a
score. Useful when there are multiple ping nodes configured.

host_list The machines to contact in order to determine the current connectivity
status. Allowed values include resolvable DNS host names, IPv4 and IPv6
addresses.

Example 9.2. An example ping cluster resource that checks node connectivity once every minute

<clone id="Connected">
 <primitive id="ping" provider="pacemaker" class="ocf" type="ping">
 <instance_attributes id="ping-attrs">
 <nvpair id="pingd-dampen" name="dampen" value="5s"/>
 <nvpair id="pingd-multiplier" name="multiplier" value="1000"/>
 <nvpair id="pingd-hosts" name="host_list" value="my.gateway.com www.bigcorp.com"/>
 </instance_attributes>
 <operations>
 <op id="ping-monitor-60s" interval="60s" name="monitor"/>
 </operations>
 </primitive>
</clone>

Important

You’re only half done. The next section deals with telling Pacemaker how to deal with the
connectivity status that ocf:pacemaker:ping is recording.

https://github.com/ClusterLabs/pacemaker/tree/master/extra/resources/ping

Chapter 9. Advanced Configuration

60

9.3.3.2. Tell Pacemaker how to interpret the connectivity data

Note

Before reading the following, please make sure you have read and understood Chapter 8, Rules
above.

There are a number of ways to use the connectivity data provided by Heartbeat. The most common
setup is for people to have a single ping node, to prevent the cluster from running a resource on any
unconnected node.

Example 9.3. Don’t run on unconnected nodes

<rsc_location id="WebServer-no-connectivity" rsc="Webserver">
 <rule id="ping-exclude-rule" score="-INFINITY" >
 <expression id="ping-exclude" attribute="pingd" operation="not_defined"/>
 </rule>
</rsc_location>

A more complex setup is to have a number of ping nodes configured. You can require the cluster to
only run resources on nodes that can connect to all (or a minimum subset) of them.

Example 9.4. Run only on nodes connected to three or more ping nodes; this assumes
multiplier is set to 1000:

<rsc_location id="WebServer-connectivity" rsc="Webserver">
 <rule id="ping-prefer-rule" score="-INFINITY" >
 <expression id="ping-prefer" attribute="pingd" operation="lt" value="3000"/>
 </rule>
</rsc_location>

Instead you can tell the cluster only to prefer nodes with the best connectivity. Just be sure to set
multiplier to a value higher than that of resource-stickiness (and don’t set either of them to
INFINITY).

Example 9.5. Prefer the node with the most connected ping nodes

<rsc_location id="WebServer-connectivity" rsc="Webserver">
 <rule id="ping-prefer-rule" score-attribute="pingd" >
 <expression id="ping-prefer" attribute="pingd" operation="defined"/>
 </rule>
</rsc_location>

It is perhaps easier to think of this in terms of the simple constraints that the cluster translates it into.
For example, if sles-1 is connected to all 5 ping nodes but sles-2 is only connected to 2, then it
would be as if you instead had the following constraints in your configuration:

Resource Migration

61

Example 9.6. How the cluster translates the pingd constraint

<rsc_location id="ping-1" rsc="Webserver" node="sles-1" score="5000"/>
<rsc_location id="ping-2" rsc="Webserver" node="sles-2" score="2000"/>

The advantage is that you don’t have to manually update any constraints whenever your network
connectivity changes.

You can also combine the concepts above into something even more complex. The example
below shows how you can prefer the node with the most connected ping nodes provided they have
connectivity to at least three (again assuming that multiplier is set to 1000).

Example 9.7. A more complex example of choosing a location based on connectivity

<rsc_location id="WebServer-connectivity" rsc="Webserver">
 <rule id="ping-exclude-rule" score="-INFINITY" >
 <expression id="ping-exclude" attribute="pingd" operation="lt" value="3000"/>
 </rule>
 <rule id="ping-prefer-rule" score-attribute="pingd" >
 <expression id="ping-prefer" attribute="pingd" operation="defined"/>
 </rule>
</rsc_location>

9.3.4. Resource Migration
Some resources, such as Xen virtual guests, are able to move to another location without loss of state.
We call this resource migration; this is different from the normal practice of stopping the resource on
the first machine and starting it elsewhere.

Not all resources are able to migrate, see the Migration Checklist below, and those that can, won’t do
so in all situations. Conceptually there are two requirements from which the other prerequisites follow:

• the resource must be active and healthy at the old location

• everything required for the resource to run must be available on both the old and new locations

The cluster is able to accommodate both push and pull migration models by requiring the
resource agent to support two new actions: migrate_to (performed on the current location) and
migrate_from (performed on the destination).

In push migration, the process on the current location transfers the resource to the new location where
is it later activated. In this scenario, most of the work would be done in the migrate_to action and, if
anything, the activation would occur during migrate_from.

Conversely for pull, the migrate_to action is practically empty and migrate_from does most of the
work, extracting the relevant resource state from the old location and activating it.

There is no wrong or right way to implement migration for your service, as long as it works.

9.3.4.1. Migration Checklist
• The resource may not be a clone.

• The resource must use an OCF style agent.

• The resource must not be in a failed or degraded state.

Chapter 9. Advanced Configuration

62

• The resource must not, directly or indirectly, depend on any primitive or group resources.

• The resource must support two new actions: migrate_to and migrate_from, and advertise
them in its metadata.

• The resource must have the allow-migrate meta-attribute set to true (which is not the default).

If the resource depends on a clone, and at the time the resource needs to be move, the clone has
instances that are stopping and instances that are starting, then the resource will be moved in the
traditional manner. The Policy Engine is not yet able to model this situation correctly and so takes the
safe (yet less optimal) path.

9.4. Reusing Rules, Options and Sets of Operations
Sometimes a number of constraints need to use the same set of rules, and resources need to set the
same options and parameters. To simplify this situation, you can refer to an existing object using an
id-ref instead of an id.

So if for one resource you have

<rsc_location id="WebServer-connectivity" rsc="Webserver">
 <rule id="ping-prefer-rule" score-attribute="pingd" >
 <expression id="ping-prefer" attribute="pingd" operation="defined"/>
 </rule>
</rsc_location>

Then instead of duplicating the rule for all your other resources, you can instead specify:

Example 9.8. Referencing rules from other constraints

<rsc_location id="WebDB-connectivity" rsc="WebDB">
 <rule id-ref="ping-prefer-rule"/>
</rsc_location>

Important

The cluster will insist that the rule exists somewhere. Attempting to add a reference to a non-
existing rule will cause a validation failure, as will attempting to remove a rule that is referenced
elsewhere.

The same principle applies for meta_attributes and instance_attributes as illustrated in the
example below:

Example 9.9. Referencing attributes, options, and operations from other resources

<primitive id="mySpecialRsc" class="ocf" type="Special" provider="me">
 <instance_attributes id="mySpecialRsc-attrs" score="1" >
 <nvpair id="default-interface" name="interface" value="eth0"/>
 <nvpair id="default-port" name="port" value="9999"/>
 </instance_attributes>
 <meta_attributes id="mySpecialRsc-options">
 <nvpair id="failure-timeout" name="failure-timeout" value="5m"/>

Reloading Services After a Definition Change

63

 <nvpair id="migration-threshold" name="migration-threshold" value="1"/>
 <nvpair id="stickiness" name="resource-stickiness" value="0"/>
 </meta_attributes>
 <operations id="health-checks">
 <op id="health-check" name="monitor" interval="60s"/>
 <op id="health-check" name="monitor" interval="30min"/>
 </operations>
</primitive>
<primitive id="myOtherlRsc" class="ocf" type="Other" provider="me">
 <instance_attributes id-ref="mySpecialRsc-attrs"/>
 <meta_attributes id-ref="mySpecialRsc-options"/>
 <operations id-ref="health-checks"/>
</primitive>

9.5. Reloading Services After a Definition Change
The cluster automatically detects changes to the definition of services it manages. However, the
normal response is to stop the service (using the old definition) and start it again (with the new
definition). This works well, but some services are smarter and can be told to use a new set of options
without restarting.

To take advantage of this capability, your resource agent must:

1. Accept the reload operation and perform any required actions. The steps required here depend
completely on your application!

Example 9.10. The DRBD Agent’s Control logic for Supporting the reload Operation

case $1 in
 start)
 drbd_start
 ;;
 stop)
 drbd_stop
 ;;
 reload)
 drbd_reload
 ;;
 monitor)
 drbd_monitor
 ;;
 *)
 drbd_usage
 exit $OCF_ERR_UNIMPLEMENTED
 ;;
esac
exit $?

2. Advertise the reload operation in the actions section of its metadata

Example 9.11. The DRBD Agent Advertising Support for the reload Operation

<?xml version="1.0"?>
 <!DOCTYPE resource-agent SYSTEM "ra-api-1.dtd">
 <resource-agent name="drbd">
 <version>1.1</version>

 <longdesc>
 Master/Slave OCF Resource Agent for DRBD
 </longdesc>

Chapter 9. Advanced Configuration

64

 ...

 <actions>
 <action name="start" timeout="240" />
 <action name="reload" timeout="240" />
 <action name="promote" timeout="90" />
 <action name="demote" timeout="90" />
 <action name="notify" timeout="90" />
 <action name="stop" timeout="100" />
 <action name="meta-data" timeout="5" />
 <action name="validate-all" timeout="30" />
 </actions>
 </resource-agent>

3. Advertise one or more parameters that can take effect using reload.

Any parameter with the unique set to 0 is eligible to be used in this way.

Example 9.12. Parameter that can be changed using reload

<parameter name="drbdconf" unique="0">
 <longdesc>Full path to the drbd.conf file.</longdesc>
 <shortdesc>Path to drbd.conf</shortdesc>
 <content type="string" default="${OCF_RESKEY_drbdconf_default}"/>
</parameter>

Once these requirements are satisfied, the cluster will automatically know to reload the resource
(instead of restarting) when a non-unique fields changes.

Note

The metadata is re-read when the resource is started. This may mean that the resource will be
restarted the first time, even though you changed a parameter with unique=0

Note

If both a unique and non-unique field are changed simultaneously, the resource will still be
restarted.

Chapter 10.

65

Advanced Resource Types

Table of Contents
10.1. Groups - A Syntactic Shortcut ... 65

10.1.1. Group Properties .. 66
10.1.2. Group Options .. 66
10.1.3. Group Instance Attributes ... 66
10.1.4. Group Contents .. 66
10.1.5. Group Constraints .. 67
10.1.6. Group Stickiness .. 67

10.2. Clones - Resources That Get Active on Multiple Hosts .. 67
10.2.1. Clone Properties ... 68
10.2.2. Clone Options .. 68
10.2.3. Clone Instance Attributes .. 68
10.2.4. Clone Contents .. 68
10.2.5. Clone Constraints ... 68
10.2.6. Clone Stickiness ... 69
10.2.7. Clone Resource Agent Requirements .. 69

10.3. Multi-state - Resources That Have Multiple Modes .. 71
10.3.1. Multi-state Properties .. 71
10.3.2. Multi-state Options .. 71
10.3.3. Multi-state Instance Attributes ... 72
10.3.4. Multi-state Contents .. 72
10.3.5. Monitoring Multi-State Resources .. 72
10.3.6. Multi-state Constraints .. 72
10.3.7. Multi-state Stickiness .. 73
10.3.8. Which Resource Instance is Promoted .. 74
10.3.9. Multi-state Resource Agent Requirements ... 74
10.3.10. Multi-state Notifications ... 74
10.3.11. Multi-state - Proper Interpretation of Notification Environment Variables 75

10.1. Groups - A Syntactic Shortcut

One of the most common elements of a cluster is a set of resources that need to be located together,
start sequentially, and stop in the reverse order. To simplify this configuration we support the concept
of groups.

Example 10.1. An example group

<group id="shortcut">
 <primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="1.2.3.4"/>
 </instance_attributes>
 </primitive>
 <primitive id="Email" class="lsb" type="exim"/>
 </group>

Chapter 10. Advanced Resource Types

66

Although the example above contains only two resources, there is no limit to the number of resources
a group can contain. The example is also sufficient to explain the fundamental properties of a group:

• Resources are started in the order they appear in (Public-IP first, then Email)

• Resources are stopped in the reverse order to which they appear in (Email first, then Public-IP)

If a resource in the group can’t run anywhere, then nothing after that is allowed to run, too.

• If Public-IP can’t run anywhere, neither can Email;

• but if Email can’t run anywhere, this does not affect Public-IP in any way

The group above is logically equivalent to writing:

Example 10.2. How the cluster sees a group resource

<configuration>
 <resources>
 <primitive id="Public-IP" class="ocf" type="IPaddr" provider="heartbeat">
 <instance_attributes id="params-public-ip">
 <nvpair id="public-ip-addr" name="ip" value="1.2.3.4"/>
 </instance_attributes>
 </primitive>
 <primitive id="Email" class="lsb" type="exim"/>
 </resources>
 <constraints>
 <rsc_colocation id="xxx" rsc="Email" with-rsc="Public-IP" score="INFINITY"/>
 <rsc_order id="yyy" first="Public-IP" then="Email"/>
 </constraints>
</configuration>

Obviously as the group grows bigger, the reduced configuration effort can become significant.

Another (typical) example of a group is a DRBD volume, the filesystem mount, an IP address, and an
application that uses them.

10.1.1. Group Properties

Table 10.1. Properties of a Group Resource

Field Description

id Your name for the group

10.1.2. Group Options
Options inherited from primitive resources: priority, target-role, is-managed

10.1.3. Group Instance Attributes
Groups have no instance attributes, however any that are set here will be inherited by the group’s
children.

10.1.4. Group Contents
Groups may only contain a collection of Section 5.3, “Resource Properties” cluster resources. To refer
to the child of a group resource, just use the child’s id instead of the group’s.

Group Constraints

67

10.1.5. Group Constraints
Although it is possible to reference the group’s children in constraints, it is usually preferable to use the
group’s name instead.

Example 10.3. Example constraints involving groups

<constraints>
 <rsc_location id="group-prefers-node1" rsc="shortcut" node="node1" score="500"/>
 <rsc_colocation id="webserver-with-group" rsc="Webserver" with-rsc="shortcut"/>
 <rsc_order id="start-group-then-webserver" first="Webserver" then="shortcut"/>
</constraints>

10.1.6. Group Stickiness

Stickiness, the measure of how much a resource wants to stay where it is, is additive in groups. Every
active resource of the group will contribute its stickiness value to the group’s total. So if the default
resource-stickiness is 100, and a group has seven members, five of which are active, then the
group as a whole will prefer its current location with a score of 500.

10.2. Clones - Resources That Get Active on Multiple Hosts

Clones were initially conceived as a convenient way to start N instances of an IP resource and have
them distributed throughout the cluster for load balancing. They have turned out to quite useful for a
number of purposes including integrating with Red Hat’s DLM, the fencing subsystem, and OCFS2.

You can clone any resource, provided the resource agent supports it.

Three types of cloned resources exist:

• Anonymous

• Globally Unique

• Stateful

Anonymous clones are the simplest type. These resources behave completely identically everywhere
they are running. Because of this, there can only be one copy of an anonymous clone active per
machine.

Globally unique clones are distinct entities. A copy of the clone running on one machine is not
equivalent to another instance on another node. Nor would any two copies on the same node be
equivalent.

Stateful clones are covered later in Section 10.3, “Multi-state - Resources That Have Multiple Modes”.

Example 10.4. An example clone

<clone id="apache-clone">
 <meta_attributes id="apache-clone-meta">
 <nvpair id="apache-unique" name="globally-unique" value="false"/>
 </meta_attributes>
 <primitive id="apache" class="lsb" type="apache"/>
</clone>

Chapter 10. Advanced Resource Types

68

10.2.1. Clone Properties

Table 10.2. Properties of a Clone Resource

Field Description

id Your name for the clone

10.2.2. Clone Options
Options inherited from primitive resources: priority, target-role, is-managed

Table 10.3. Clone specific configuration options

Field Description

clone-max How many copies of the resource to start. Defaults to the
number of nodes in the cluster.

clone-node-max How many copies of the resource can be started on a
single node; default 1.

notify When stopping or starting a copy of the clone, tell all
the other copies beforehand and when the action was
successful. Allowed values: false, true

globally-unique Does each copy of the clone perform a different function?
Allowed values: false, true

ordered Should the copies be started in series (instead of in
parallel). Allowed values: false, true

interleave Changes the behavior of ordering constraints (between
clones/masters) so that instances can start/stop as soon
as their peer instance has (rather than waiting for every
instance of the other clone has). Allowed values: false,
true

10.2.3. Clone Instance Attributes
Clones have no instance attributes; however, any that are set here will be inherited by the clone’s
children.

10.2.4. Clone Contents
Clones must contain exactly one group or one regular resource.

Warning

You should never reference the name of a clone’s child. If you think you need to do this, you
probably need to re-evaluate your design.

10.2.5. Clone Constraints
In most cases, a clone will have a single copy on each active cluster node. If this is not the case, you
can indicate which nodes the cluster should preferentially assign copies to with resource location

Clone Stickiness

69

constraints. These constraints are written no differently to those for regular resources except that the
clone’s id is used.

Ordering constraints behave slightly differently for clones. In the example below, apache-stats will
wait until all copies of the clone that need to be started have done so before being started itself. Only
if no copies can be started apache-stats will be prevented from being active. Additionally, the clone
will wait for apache-stats to be stopped before stopping the clone.

Colocation of a regular (or group) resource with a clone means that the resource can run on any
machine with an active copy of the clone. The cluster will choose a copy based on where the clone is
running and the resource’s own location preferences.

Colocation between clones is also possible. In such cases, the set of allowed locations for the clone is
limited to nodes on which the clone is (or will be) active. Allocation is then performed as normally.

Example 10.5. Example constraints involving clones

<constraints>
 <rsc_location id="clone-prefers-node1" rsc="apache-clone" node="node1" score="500"/>
 <rsc_colocation id="stats-with-clone" rsc="apache-stats" with="apache-clone"/>
 <rsc_order id="start-clone-then-stats" first="apache-clone" then="apache-stats"/>
</constraints>

10.2.6. Clone Stickiness

To achieve a stable allocation pattern, clones are slightly sticky by default. If no value for resource-
stickiness is provided, the clone will use a value of 1. Being a small value, it causes minimal
disturbance to the score calculations of other resources but is enough to prevent Pacemaker from
needlessly moving copies around the cluster.

10.2.7. Clone Resource Agent Requirements
Any resource can be used as an anonymous clone, as it requires no additional support from the
resource agent. Whether it makes sense to do so depends on your resource and its resource agent.

Globally unique clones do require some additional support in the resource agent. In particular, it must
only respond with other probes for instances of the clone should result in they should return one of the
other OCF error codes.

Copies of a clone are identified by appending a colon and a numerical offset, eg. apache:2.

Resource agents can find out how many copies there are by examining the
OCF_RESKEY_CRM_meta_clone_max environment variable and which copy it is by examining
OCF_RESKEY_CRM_meta_clone.

You should not make any assumptions (based on OCF_RESKEY_CRM_meta_clone) about which
copies are active. In particular, the list of active copies will not always be an unbroken sequence, nor
always start at 0.

10.2.7.1. Clone Notifications
Supporting notifications requires the notify action to be implemented. Once supported, the notify
action will be passed a number of extra variables which, when combined with additional context, can
be used to calculate the current state of the cluster and what is about to happen to it.

Chapter 10. Advanced Resource Types

70

Table 10.4. Environment variables supplied with Clone notify actions

Variable Description

OCF_RESKEY_CRM_meta_notify_type Allowed values: pre, post

OCF_RESKEY_CRM_meta_notify_operation Allowed values: start, stop

OCF_RESKEY_CRM_meta_notify_start_resource Resources to be started

OCF_RESKEY_CRM_meta_notify_stop_resource Resources to be stopped

OCF_RESKEY_CRM_meta_notify_active_resource Resources that are running

OCF_RESKEY_CRM_meta_notify_inactive_resource Resources that are not running

OCF_RESKEY_CRM_meta_notify_start_uname Nodes on which resources will be
started

OCF_RESKEY_CRM_meta_notify_stop_uname Nodes on which resources will be
stopped

OCF_RESKEY_CRM_meta_notify_active_uname Nodes on which resources are
running

OCF_RESKEY_CRM_meta_notify_inactive_uname Nodes on which resources are
not running

The variables come in pairs, such as OCF_RESKEY_CRM_meta_notify_start_resource and
OCF_RESKEY_CRM_meta_notify_start_uname and should be treated as an array of whitespace
separated elements.

Thus in order to indicate that clone:0 will be started on sles-1, clone:2 will be started on
sles-3, and clone:3 will be started on sles-2, the cluster would set

Example 10.6. Example notification variables

OCF_RESKEY_CRM_meta_notify_start_resource="clone:0 clone:2 clone:3"
OCF_RESKEY_CRM_meta_notify_start_uname="sles-1 sles-3 sles-2"

10.2.7.2. Proper Interpretation of Notification Environment Variables

Pre-notification (stop):
• Active resources: $OCF_RESKEY_CRM_meta_notify_active_resource

• Inactive resources: $OCF_RESKEY_CRM_meta_notify_inactive_resource

• Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

Post-notification (stop) / Pre-notification (start):
• Active resources

• $OCF_RESKEY_CRM_meta_notify_active_resource

• minus $OCF_RESKEY_CRM_meta_notify_stop_resource

• Inactive resources

• $OCF_RESKEY_CRM_meta_notify_inactive_resource

Multi-state - Resources That Have Multiple Modes

71

• plus $OCF_RESKEY_CRM_meta_notify_stop_resource

• Resources that were started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources that were stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

Post-notification (start):
• Active resources:

• $OCF_RESKEY_CRM_meta_notify_active_resource

• minus $OCF_RESKEY_CRM_meta_notify_stop_resource

• plus $OCF_RESKEY_CRM_meta_notify_start_resource

• Inactive resources:

• $OCF_RESKEY_CRM_meta_notify_inactive_resource

• plus $OCF_RESKEY_CRM_meta_notify_stop_resource

• minus $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources that were started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources that were stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

10.3. Multi-state - Resources That Have Multiple Modes

Multi-state resources are a specialization of Clone resources; please ensure you understand the
section on clones before continuing! They allow the instances to be in one of two operating modes;
these are called Master and Slave, but can mean whatever you wish them to mean. The only
limitation is that when an instance is started, it must come up in the Slave state.

10.3.1. Multi-state Properties
Table 10.5. Properties of a Multi-State Resource

Field Description

id Your name for the multi-state resource

10.3.2. Multi-state Options
Options inherited from primitive resources: priority, target-role, is-managed

Options inherited from clone resources: clone-max, clone-node-max, notify, globally-
unique, ordered, interleave

Table 10.6. Multi-state specific resource configuration options

Field Description

master-max How many copies of the resource can be promoted to
master status; default 1.

master-node-max How many copies of the resource can be promoted to
master status on a single node; default 1.

Chapter 10. Advanced Resource Types

72

10.3.3. Multi-state Instance Attributes
Multi-state resources have no instance attributes; however, any that are set here will be inherited by
master’s children.

10.3.4. Multi-state Contents
Masters must contain exactly one group or one regular resource.

Warning

You should never reference the name of a master’s child. If you think you need to do this, you
probably need to re-evaluate your design.

10.3.5. Monitoring Multi-State Resources
The normal type of monitor actions are not sufficient to monitor a multi-state resource in the Master
state. To detect failures of the Master instance, you need to define an additional monitor action with
role="Master".

Important

It is crucial that every monitor operation has a different interval!

This is because Pacemaker currently differentiates between operations only by resource
and interval; so if eg. a master/slave resource has the same monitor interval for both roles,
Pacemaker would ignore the role when checking the status - which would cause unexpected
return codes, and therefore unnecessary complications.

Example 10.7. Monitoring both states of a multi-state resource

<master id="myMasterRsc">
 <primitive id="myRsc" class="ocf" type="myApp" provider="myCorp">
 <operations>
 <op id="public-ip-slave-check" name="monitor" interval="60"/>
 <op id="public-ip-master-check" name="monitor" interval="61" role="Master"/>
 </operations>
 </primitive>
</master>

10.3.6. Multi-state Constraints
In most cases, a multi-state resources will have a single copy on each active cluster node. If this is not
the case, you can indicate which nodes the cluster should preferentially assign copies to with resource
location constraints. These constraints are written no differently to those for regular resources except
that the master’s id is used.

When considering multi-state resources in constraints, for most purposes it is sufficient to treat them
as clones. The exception is when the rsc-role and/or with-rsc-role fields (for colocation
constraints) and first-action and/or then-action fields (for ordering constraints) are used.

Multi-state Stickiness

73

Table 10.7. Additional constraint options relevant to multi-state resources

Field Description

rsc-role An additional attribute of colocation constraints that
specifies the role that rsc must be in. Allowed values:
Started, Master, Slave.

with-rsc-role An additional attribute of colocation constraints that
specifies the role that with-rsc must be in. Allowed
values: Started, Master, Slave.

first-action An additional attribute of ordering constraints that specifies
the action that the first resource must complete before
executing the specified action for the then resource.
Allowed values: start, stop, promote, demote.

then-action An additional attribute of ordering constraints that specifies
the action that the then resource can only execute
after the first-action on the first resource has
completed. Allowed values: start, stop, promote,
demote. Defaults to the value (specified or implied) of
first-action.

In the example below, myApp will wait until one of the database copies has been started and promoted
to master before being started itself. Only if no copies can be promoted will apache-stats be
prevented from being active. Additionally, the database will wait for myApp to be stopped before it is
demoted.

Example 10.8. Example constraints involving multi-state resources

<constraints>
 <rsc_location id="db-prefers-node1" rsc="database" node="node1" score="500"/>
 <rsc_colocation id="backup-with-db-slave" rsc="backup"
 with-rsc="database" with-rsc-role="Slave"/>
 <rsc_colocation id="myapp-with-db-master" rsc="myApp"
 with-rsc="database" with-rsc-role="Master"/>
 <rsc_order id="start-db-before-backup" first="database" then="backup"/>
 <rsc_order id="promote-db-then-app" first="database" first-action="promote"
 then="myApp" then-action="start"/>
</constraints>

Colocation of a regular (or group) resource with a multi-state resource means that it can run on
any machine with an active copy of the multi-state resource that is in the specified state (Master
or Slave). In the example, the cluster will choose a location based on where database is running
as a Master, and if there are multiple Master instances it will also factor in myApp's own location
preferences when deciding which location to choose.

Colocation with regular clones and other multi-state resources is also possible. In such cases, the set
of allowed locations for the rsc clone is (after role filtering) limited to nodes on which the with-rsc
multi-state resource is (or will be) in the specified role. Allocation is then performed as-per-normal.

10.3.7. Multi-state Stickiness
 To achieve a stable allocation pattern, multi-state resources are slightly sticky by default. If no value
for resource-stickiness is provided, the multi-state resource will use a value of 1. Being a small
value, it causes minimal disturbance to the score calculations of other resources but is enough to
prevent Pacemaker from needlessly moving copies around the cluster.

Chapter 10. Advanced Resource Types

74

10.3.8. Which Resource Instance is Promoted
During the start operation, most Resource Agent scripts should call the crm_master utility. This tool
automatically detects both the resource and host and should be used to set a preference for being
promoted. Based on this, master-max, and master-node-max, the instance(s) with the highest
preference will be promoted.

The other alternative is to create a location constraint that indicates which nodes are most preferred as
masters.

Example 10.9. Manually specifying which node should be promoted

<rsc_location id="master-location" rsc="myMasterRsc">
 <rule id="master-rule" score="100" role="Master">
 <expression id="master-exp" attribute="#uname" operation="eq" value="node1"/>
 </rule>
</rsc_location>

10.3.9. Multi-state Resource Agent Requirements
Since multi-state resources are an extension of cloned resources, all the requirements of Clones
are also requirements of multi-state resources. Additionally, multi-state resources require two extra
actions: demote and promote; these actions are responsible for changing the state of the resource.
Like start and stop, they should return OCF_SUCCESS if they completed successfully or a relevant
error code if they did not.

The states can mean whatever you wish, but when the resource is started, it must come up in the
mode called Slave. From there the cluster will then decide which instances to promote to Master.

In addition to the Clone requirements for monitor actions, agents must also accurately report which
state they are in. The cluster relies on the agent to report its status (including role) accurately and
does not indicate to the agent what role it currently believes it to be in.

Table 10.8. Role implications of OCF return codes

Monitor Return Code Description

OCF_NOT_RUNNING Stopped

OCF_SUCCESS Running (Slave)

OCF_RUNNING_MASTER Running (Master)

OCF_FAILED_MASTER Failed (Master)

Other Failed (Slave)

10.3.10. Multi-state Notifications
Like clones, supporting notifications requires the notify action to be implemented. Once supported
the notify action will be passed a number of extra variables which, when combined with additional
context, can be used to calculate the current state of the cluster and what is about to happen to it.

Table 10.9. Environment variables supplied with Master notify actions 1

Variable Description

OCF_RESKEY_CRM_meta_notify_type Allowed values: pre, post

OCF_RESKEY_CRM_meta_notify_operation Allowed values: start, stop

OCF_RESKEY_CRM_meta_notify_active_resource Resources the that are running

Multi-state - Proper Interpretation of Notification Environment Variables

75

Variable Description

OCF_RESKEY_CRM_meta_notify_inactive_resource Resources the that are not
running

OCF_RESKEY_CRM_meta_notify_master_resource Resources that are running in
Master mode

OCF_RESKEY_CRM_meta_notify_slave_resource Resources that are running in
Slave mode

OCF_RESKEY_CRM_meta_notify_start_resource Resources to be started

 OCF_RESKEY_CRM_meta_notify_stop_resource Resources to be stopped

OCF_RESKEY_CRM_meta_notify_promote_resource Resources to be promoted

OCF_RESKEY_CRM_meta_notify_demote_resource Resources to be demoted

OCF_RESKEY_CRM_meta_notify_start_uname Nodes on which resources will be
started

OCF_RESKEY_CRM_meta_notify_stop_uname Nodes on which resources will be
stopped

OCF_RESKEY_CRM_meta_notify_promote_uname Nodes on which resources will be
promote

OCF_RESKEY_CRM_meta_notify_demote_uname Nodes on which resources will be
demoted

OCF_RESKEY_CRM_meta_notify_active_uname Nodes on which resources are
running

OCF_RESKEY_CRM_meta_notify_inactive_uname Nodes on which resources are
not running

OCF_RESKEY_CRM_meta_notify_master_uname Nodes on which resources are
running in Master mode

OCF_RESKEY_CRM_meta_notify_slave_uname Nodes on which resources are
running in Slave mode

1 Emphasized variables are specific to Master resources and all behave in the same manner as described for Clone resources.

10.3.11. Multi-state - Proper Interpretation of Notification
Environment Variables

Pre-notification (demote):
• Active resources: $OCF_RESKEY_CRM_meta_notify_active_resource

• Master resources: $OCF_RESKEY_CRM_meta_notify_master_resource

• Slave resources: $OCF_RESKEY_CRM_meta_notify_slave_resource

• Inactive resources: $OCF_RESKEY_CRM_meta_notify_inactive_resource

• Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource

• Resources to be demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

• Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

Chapter 10. Advanced Resource Types

76

Post-notification (demote) / Pre-notification (stop):
• Active resources: $OCF_RESKEY_CRM_meta_notify_active_resource

• Master resources:

• $OCF_RESKEY_CRM_meta_notify_master_resource

• minus $OCF_RESKEY_CRM_meta_notify_demote_resource

• Slave resources: $OCF_RESKEY_CRM_meta_notify_slave_resource

• Inactive resources: $OCF_RESKEY_CRM_meta_notify_inactive_resource

• Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource

• Resources to be demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

• Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

• Resources that were demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

Post-notification (stop) / Pre-notification (start)
• Active resources:

• $OCF_RESKEY_CRM_meta_notify_active_resource

• minus $OCF_RESKEY_CRM_meta_notify_stop_resource

• Master resources:

• $OCF_RESKEY_CRM_meta_notify_master_resource

• minus $OCF_RESKEY_CRM_meta_notify_demote_resource

• Slave resources:

• $OCF_RESKEY_CRM_meta_notify_slave_resource

• minus $OCF_RESKEY_CRM_meta_notify_stop_resource

• Inactive resources:

• $OCF_RESKEY_CRM_meta_notify_inactive_resource

• plus $OCF_RESKEY_CRM_meta_notify_stop_resource

• Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource

• Resources to be demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

• Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

• Resources that were demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

• Resources that were stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

Multi-state - Proper Interpretation of Notification Environment Variables

77

Post-notification (start) / Pre-notification (promote)
• Active resources:

• $OCF_RESKEY_CRM_meta_notify_active_resource

• minus $OCF_RESKEY_CRM_meta_notify_stop_resource

• plus $OCF_RESKEY_CRM_meta_notify_start_resource

• Master resources:

• $OCF_RESKEY_CRM_meta_notify_master_resource

• minus $OCF_RESKEY_CRM_meta_notify_demote_resource

• Slave resources:

• $OCF_RESKEY_CRM_meta_notify_slave_resource

• minus $OCF_RESKEY_CRM_meta_notify_stop_resource

• plus $OCF_RESKEY_CRM_meta_notify_start_resource

• Inactive resources:

• $OCF_RESKEY_CRM_meta_notify_inactive_resource

• plus $OCF_RESKEY_CRM_meta_notify_stop_resource

• minus $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource

• Resources to be demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

• Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

• Resources that were started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources that were demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

• Resources that were stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

Post-notification (promote)
• Active resources:

• $OCF_RESKEY_CRM_meta_notify_active_resource

• minus $OCF_RESKEY_CRM_meta_notify_stop_resource

• plus $OCF_RESKEY_CRM_meta_notify_start_resource

• Master resources:

• $OCF_RESKEY_CRM_meta_notify_master_resource

• minus $OCF_RESKEY_CRM_meta_notify_demote_resource

Chapter 10. Advanced Resource Types

78

• plus $OCF_RESKEY_CRM_meta_notify_promote_resource

• Slave resources:

• $OCF_RESKEY_CRM_meta_notify_slave_resource

• minus $OCF_RESKEY_CRM_meta_notify_stop_resource

• plus $OCF_RESKEY_CRM_meta_notify_start_resource

• minus $OCF_RESKEY_CRM_meta_notify_promote_resource

• Inactive resources:

• $OCF_RESKEY_CRM_meta_notify_inactive_resource

• plus $OCF_RESKEY_CRM_meta_notify_stop_resource

• minus $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources to be promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource

• Resources to be demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

• Resources to be stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

• Resources that were started: $OCF_RESKEY_CRM_meta_notify_start_resource

• Resources that were promoted: $OCF_RESKEY_CRM_meta_notify_promote_resource

• Resources that were demoted: $OCF_RESKEY_CRM_meta_notify_demote_resource

• Resources that were stopped: $OCF_RESKEY_CRM_meta_notify_stop_resource

Chapter 11.

79

Utilization and Placement Strategy

Table of Contents
11.1. Background ... 79
11.2. Utilization attributes ... 79
11.3. Placement Strategy ... 80
11.4. Allocation Details ... 81

11.4.1. Which node is preferred to be chosen to get consumed first on allocating
resources? ... 81
11.4.2. Which resource is preferred to be chosen to get assigned first? 81

11.5. Limitations .. 82
11.6. Strategies for Dealing with the Limitations .. 82

11.1. Background
Pacemaker decides where to place a resource according to the resource allocation scores on
every node. The resource will be allocated to the node where the resource has the highest score.
If the resource allocation scores on all the nodes are equal, by the default placement strategy,
Pacemaker will choose a node with the least number of allocated resources for balancing the load. If
the number of resources on each node is equal, the first eligible node listed in cib will be chosen to run
the resource.

Though resources are different. They may consume different amounts of the capacities of the nodes.
Actually, we cannot ideally balance the load just according to the number of resources allocated to a
node. Besides, if resources are placed such that their combined requirements exceed the provided
capacity, they may fail to start completely or run with degraded performance.

To take these into account, Pacemaker allows you to specify the following configurations:

1. The capacity a certain node provides.

2. The capacity a certain resource requires.

3. An overall strategy for placement of resources.

11.2. Utilization attributes
To configure the capacity a node provides and the resource’s requirements, use utilization
attributes. You can name the utilization attributes according to your preferences and define
as many name/value pairs as your configuration needs. However, the attribute’s values must be
integers.

First, specify the capacities the nodes provide:

<node id="node1" type="normal" uname="node1">
 <utilization id="node1-utilization">
 <nvpair id="node1-utilization-cpu" name="cpu" value="2"/>
 <nvpair id="node1-utilization-memory" name="memory" value="2048"/>
 </utilization>
</node>
<node id="node2" type="normal" uname="node2">

Chapter 11. Utilization and Placement Strategy

80

 <utilization id="node2-utilization">
 <nvpair id="node2-utilization-cpu" name="cpu" value="4"/>
 <nvpair id="node2-utilization-memory" name="memory" value="4096"/>
 </utilization>
</node>

Then, specify the capacities the resources require:

<primitive id="rsc-small" class="ocf" provider="pacemaker" type="Dummy">
 <utilization id="rsc-small-utilization">
 <nvpair id="rsc-small-utilization-cpu" name="cpu" value="1"/>
 <nvpair id="rsc-small-utilization-memory" name="memory" value="1024"/>
 </utilization>
</primitive>
<primitive id="rsc-medium" class="ocf" provider="pacemaker" type="Dummy">
 <utilization id="rsc-medium-utilization">
 <nvpair id="rsc-medium-utilization-cpu" name="cpu" value="2"/>
 <nvpair id="rsc-medium-utilization-memory" name="memory" value="2048"/>
 </utilization>
</primitive>
<primitive id="rsc-large" class="ocf" provider="pacemaker" type="Dummy">
 <utilization id="rsc-large-utilization">
 <nvpair id="rsc-large-utilization-cpu" name="cpu" value="3"/>
 <nvpair id="rsc-large-utilization-memory" name="memory" value="3072"/>
 </utilization>
</primitive>

A node is considered eligible for a resource if it has sufficient free capacity to satisfy the resource’s
requirements. The nature of the required or provided capacities is completely irrelevant for
Pacemaker, it just makes sure that all capacity requirements of a resource are satisfied before placing
a resource to a node.

11.3. Placement Strategy
After you have configured the capacities your nodes provide and the capacities your resources
require, you need to set the placement-strategy in the global cluster options, otherwise the
capacity configurations have no effect.

Four values are available for the placement-strategy:

default
Utilization values are not taken into account at all, per default. Resources are allocated according
to allocation scores. If scores are equal, resources are evenly distributed across nodes.

utilization
Utilization values are taken into account when deciding whether a node is considered eligible if it
has sufficient free capacity to satisfy the resource’s requirements. However, load-balancing is still
done based on the number of resources allocated to a node.

balanced
Utilization values are taken into account when deciding whether a node is eligible to serve a
resource; an attempt is made to spread the resources evenly, optimizing resource performance.

minimal
Utilization values are taken into account when deciding whether a node is eligible to serve a
resource; an attempt is made to concentrate the resources on as few nodes as possible, thereby
enabling possible power savings on the remaining nodes.

Set placement-strategy with crm_attribute:

Allocation Details

81

crm_attribute --attr-name placement-strategy --attr-value balanced

Now Pacemaker will ensure the load from your resources will be distributed evenly throughout the
cluster - without the need for convoluted sets of colocation constraints.

11.4. Allocation Details

11.4.1. Which node is preferred to be chosen to get consumed first
on allocating resources?
• The node that is most healthy (which has the highest node weight) gets consumed first.

• If their weights are equal:

• If placement-strategy="default|utilization", the node that has the least number of
allocated resources gets consumed first.

• If their numbers of allocated resources are equal, the first eligible node listed in cib gets
consumed first.

• If placement-strategy="balanced", the node that has more free capacity gets consumed
first.

• If the free capacities of the nodes are equal, the node that has the least number of allocated
resources gets consumed first.

• If their numbers of allocated resources are equal, the first eligible node listed in cib gets
consumed first.

• If placement-strategy="minimal", the first eligible node listed in cib gets consumed first.

11.4.1.1. Which node has more free capacity?
This will be quite clear if we only define one type of capacity. While if we define multiple types of
capacity, for example:

• If nodeA has more free cpus, nodeB has more free memory, their free capacities are equal.

• If nodeA has more free cpus, while nodeB has more free memory and storage, nodeB has more
free capacity.

11.4.2. Which resource is preferred to be chosen to get assigned
first?
• The resource that has the highest priority gets allocated first.

• If their priorities are equal, check if they are already running. The resource that has the highest
score on the node where it’s running gets allocated first (to prevent resource shuffling).

• If the scores above are equal or they are not running, the resource has the highest score on the
preferred node gets allocated first.

• If the scores above are equal, the first runnable resource listed in cib gets allocated first.

Chapter 11. Utilization and Placement Strategy

82

11.5. Limitations
This type of problem Pacemaker is dealing with here is known as the knapsack problem1 and falls into
the NP-complete2 category of computer science problems - which is fancy way of saying "it takes a
really long time to solve".

Clearly in a HA cluster, it’s not acceptable to spend minutes, let alone hours or days, finding an
optional solution while services remain unavailable.

So instead of trying to solve the problem completely, Pacemaker uses a best effort algorithm for
determining which node should host a particular service. This means it arrives at a solution much
faster than traditional linear programming algorithms, but by doing so at the price of leaving some
services stopped.

In the contrived example above:

• rsc-small would be allocated to node1

• rsc-medium would be allocated to node2

• rsc-large would remain inactive

Which is not ideal.

11.6. Strategies for Dealing with the Limitations
• Ensure you have sufficient physical capacity. It might sounds obvious, but if the physical capacity of

your nodes is (close to) maxed out by the cluster under normal conditions, then failover isn’t going
to go well. Even without the Utilization feature, you’ll start hitting timeouts and getting secondary
failures'.

• Build some buffer into the capabilities advertised by the nodes. Advertise slightly more resources
than we physically have on the (usually valid) assumption that a resource will not use 100% of the
configured number of cpu/memory/etc all the time. This practice is also known as over commit.

• Specify resource priorities. If the cluster is going to sacrifice services, it should be the ones you care
(comparatively) about the least. Ensure that resource priorities are properly set so that your most
important resources are scheduled first.

1 http://en.wikipedia.org/wiki/Knapsack_problem
2 http://en.wikipedia.org/wiki/NP-complete

http://en.wikipedia.org/wiki/Knapsack_problem
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Knapsack_problem
http://en.wikipedia.org/wiki/NP-complete

Chapter 12.

83

Resource Templates

Table of Contents
12.1. Abstract .. 83
12.2. Configuring Resources with Templates ... 83
12.3. Referencing Templates in Constraints .. 84

12.1. Abstract
If you want to create lots of resources with similar configurations, defining a resource template
simplifies the task. Once defined, it can be referenced in primitives or in certain types of constraints.

12.2. Configuring Resources with Templates
The primitives referencing the template will inherit all meta attributes, instance attributes, utilization
attributes and operations defined in the template. And you can define specific attributes and
operations for any of the primitives. If any of these are defined in both the template and the primitive,
the values defined in the primitive will take precedence over the ones defined in the template.

Hence, resource templates help to reduce the amount of configuration work. If any changes are
needed, they can be done to the template definition and will take effect globally in all resource
definitions referencing that template.

Resource templates have a similar syntax like primitives. For example:

<template id="vm-template" class="ocf" provider="heartbeat" type="Xen">
 <meta_attributes id="vm-template-meta_attributes">
 <nvpair id="vm-template-meta_attributes-allow-migrate" name="allow-migrate" value="true"/
>
 </meta_attributes>
 <utilization id="vm-template-utilization">
 <nvpair id="vm-template-utilization-memory" name="memory" value="512"/>
 </utilization>
 <operations>
 <op id="vm-template-monitor-15s" interval="15s" name="monitor" timeout="60s"/>
 <op id="vm-template-start-0" interval="0" name="start" timeout="60s"/>
 </operations>
</template>

Once you defined the new resource template, you can use it in primitives:

<primitive id="vm1" template="vm-template">
 <instance_attributes id="vm1-instance_attributes">
 <nvpair id="vm1-instance_attributes-name" name="name" value="vm1"/>
 <nvpair id="vm1-instance_attributes-xmfile" name="xmfile" value="/etc/xen/shared-vm/vm1"/
>
 </instance_attributes>
</primitive>

The new primitive vm1 is going to inherit everything from the vm-template. For example, the
equivalent of the above two would be:

<primitive id="vm1" class="ocf" provider="heartbeat" type="Xen">
 <meta_attributes id="vm-template-meta_attributes">

Chapter 12. Resource Templates

84

 <nvpair id="vm-template-meta_attributes-allow-migrate" name="allow-migrate" value="true"/
>
 </meta_attributes>
 <utilization id="vm-template-utilization">
 <nvpair id="vm-template-utilization-memory" name="memory" value="512"/>
 </utilization>
 <operations>
 <op id="vm-template-monitor-15s" interval="15s" name="monitor" timeout="60s"/>
 <op id="vm-template-start-0" interval="0" name="start" timeout="60s"/>
 </operations>
 <instance_attributes id="vm1-instance_attributes">
 <nvpair id="vm1-instance_attributes-name" name="name" value="vm1"/>
 <nvpair id="vm1-instance_attributes-xmfile" name="xmfile" value="/etc/xen/shared-vm/vm1"/
>
 </instance_attributes>
</primitive>

If you want to overwrite some attributes or operations, add them to the particular primitive’s definition.

For instance, the following new primitive vm2 has special attribute values. Its monitor operation has
a longer timeout and interval, and the primitive has an additional stop operation.

<primitive id="vm2" template="vm-template">
 <meta_attributes id="vm2-meta_attributes">
 <nvpair id="vm2-meta_attributes-allow-migrate" name="allow-migrate" value="false"/>
 </meta_attributes>
 <utilization id="vm2-utilization">
 <nvpair id="vm2-utilization-memory" name="memory" value="1024"/>
 </utilization>
 <instance_attributes id="vm2-instance_attributes">
 <nvpair id="vm2-instance_attributes-name" name="name" value="vm2"/>
 <nvpair id="vm2-instance_attributes-xmfile" name="xmfile" value="/etc/xen/shared-vm/vm2"/
>
 </instance_attributes>
 <operations>
 <op id="vm2-monitor-30s" interval="30s" name="monitor" timeout="120s"/>
 <op id="vm2-stop-0" interval="0" name="stop" timeout="60s"/>
 </operations>
</primitive>

The following command shows the resulting definition of a resource:

crm_resource --query-xml --resource vm2

The following command shows its raw definition in cib:

crm_resource --query-xml-raw --resource vm2

12.3. Referencing Templates in Constraints
A resource template can be referenced in the following types of constraints:

• order constraints

• colocation constraints,

• rsc_ticket constraints (for multi-site clusters).

Resource templates referenced in constraints stand for all primitives which are derived from that
template. This means, the constraint applies to all primitive resources referencing the resource

Referencing Templates in Constraints

85

template. Referencing resource templates in constraints is an alternative to resource sets and can
simplify the cluster configuration considerably.

For example:

<rsc_colocation id="vm-template-colo-base-rsc" rsc="vm-template" rsc-role="Started" with-
rsc="base-rsc" score="INFINITY"/>

is the equivalent of the following constraint configuration:

<rsc_colocation id="vm-colo-base-rsc" score="INFINITY">
 <resource_set id="vm-colo-base-rsc-0" sequential="false" role="Started">
 <resource_ref id="vm1"/>
 <resource_ref id="vm2"/>
 </resource_set>
 <resource_set id="vm-colo-base-rsc-1">
 <resource_ref id="base-rsc"/>
 </resource_set>
</rsc_colocation>

Note

In a colocation constraint, only one template may be referenced from either rsc or with-rsc,
and the other reference must be a regular resource.

Resource templates can also be referenced in resource sets.

For example:

<rsc_order id="order1" score="INFINITY">
 <resource_set id="order1-0">
 <resource_ref id="base-rsc"/>
 <resource_ref id="vm-template"/>
 <resource_ref id="top-rsc"/>
 </resource_set>
</rsc_order>

is the equivalent of the following constraint configuration:

<rsc_order id="order1" score="INFINITY">
 <resource_set id="order1-0">
 <resource_ref id="base-rsc"/>
 <resource_ref id="vm1"/>
 <resource_ref id="vm2"/>
 <resource_ref id="top-rsc"/>
 </resource_set>
</rsc_order>

If the resources referencing the template can run in parallel:

<rsc_order id="order2" score="INFINITY">
 <resource_set id="order2-0">
 <resource_ref id="base-rsc"/>
 </resource_set>
 <resource_set id="order2-1" sequential="false">

Chapter 12. Resource Templates

86

 <resource_ref id="vm-template"/>
 </resource_set>
 <resource_set id="order2-2">
 <resource_ref id="top-rsc"/>
 </resource_set>
</rsc_order>

is the equivalent of the following constraint configuration:

<rsc_order id="order2" score="INFINITY">
 <resource_set id="order2-0">
 <resource_ref id="base-rsc"/>
 </resource_set>
 <resource_set id="order2-1" sequential="false">
 <resource_ref id="vm1"/>
 <resource_ref id="vm2"/>
 </resource_set>
 <resource_set id="order2-2">
 <resource_ref id="top-rsc"/>
 </resource_set>
</rsc_order>

Chapter 13.

87

Configure STONITH

Table of Contents
13.1. What Is STONITH ... 87
13.2. What STONITH Device Should You Use .. 87
13.3. Configuring STONITH .. 87
13.4. Example ... 88

13.1. What Is STONITH
STONITH is an acronym for Shoot-The-Other-Node-In-The-Head and it protects your data from being
corrupted by rogue nodes or concurrent access.

Just because a node is unresponsive, this doesn’t mean it isn’t accessing your data. The only way to
be 100% sure that your data is safe, is to use STONITH so we can be certain that the node is truly
offline, before allowing the data to be accessed from another node.

STONITH also has a role to play in the event that a clustered service cannot be stopped. In this case,
the cluster uses STONITH to force the whole node offline, thereby making it safe to start the service
elsewhere.

13.2. What STONITH Device Should You Use
It is crucial that the STONITH device can allow the cluster to differentiate between a node failure and a
network one.

The biggest mistake people make in choosing a STONITH device is to use remote power switch (such
as many on-board IMPI controllers) that shares power with the node it controls. In such cases, the
cluster cannot be sure if the node is really offline, or active and suffering from a network fault.

Likewise, any device that relies on the machine being active (such as SSH-based "devices" used
during testing) are inappropriate.

13.3. Configuring STONITH
1. Find the correct driver: stonith_admin --list-installed

2. Since every device is different, the parameters needed to configure it will vary. To find out the
parameters associated with the device, run: stonith_admin --metadata --agent type

The output should be XML formatted text containing additional
parameter descriptions. We will endevor to make the output more
friendly in a later version.

3. Enter the shell crm Create an editable copy of the existing configuration cib new stonith
Create a fencing resource containing a primitive resource with a class of stonith, a type of type
and a parameter for each of the values returned in step 2: configure primitive …

4. If the device does not know how to fence nodes based on their uname, you may also need to set
the special pcmk_host_map parameter. See man stonithd for details.

Chapter 13. Configure STONITH

88

5. If the device does not support the list command, you may also need to set the special
pcmk_host_list and/or pcmk_host_check parameters. See man stonithd for details.

6. If the device does not expect the victim to be specified with the port parameter, you may also need
to set the special pcmk_host_argument parameter. See man stonithd for details.

7. Upload it into the CIB from the shell: cib commit stonith

8. Once the stonith resource is running, you can test it by executing: stonith_admin --reboot
nodename. Although you might want to stop the cluster on that machine first.

13.4. Example
Assuming we have an chassis containing four nodes and an IPMI device active on 10.0.0.1, then we
would chose the fence_ipmilan driver in step 2 and obtain the following list of parameters

Obtaining a list of STONITH Parameters

stonith_admin --metadata -a fence_ipmilan

<?xml version="1.0" ?>
<resource-agent name="fence_ipmilan" shortdesc="Fence agent for IPMI over LAN">
<longdesc>
fence_ipmilan is an I/O Fencing agent which can be used with machines controlled by IPMI.
 This agent calls support software using ipmitool (http://ipmitool.sf.net/).

To use fence_ipmilan with HP iLO 3 you have to enable lanplus option (lanplus / -P) and
 increase wait after operation to 4 seconds (power_wait=4 / -T 4)</longdesc>
<parameters>
 <parameter name="auth" unique="1">
 <getopt mixed="-A" />
 <content type="string" />
 <shortdesc>IPMI Lan Auth type (md5, password, or none)</shortdesc>
 </parameter>
 <parameter name="ipaddr" unique="1">
 <getopt mixed="-a" />
 <content type="string" />
 <shortdesc>IPMI Lan IP to talk to</shortdesc>
 </parameter>
 <parameter name="passwd" unique="1">
 <getopt mixed="-p" />
 <content type="string" />
 <shortdesc>Password (if required) to control power on IPMI device</shortdesc>
 </parameter>
 <parameter name="passwd_script" unique="1">
 <getopt mixed="-S" />
 <content type="string" />
 <shortdesc>Script to retrieve password (if required)</shortdesc>
 </parameter>
 <parameter name="lanplus" unique="1">
 <getopt mixed="-P" />
 <content type="boolean" />
 <shortdesc>Use Lanplus</shortdesc>
 </parameter>
 <parameter name="login" unique="1">
 <getopt mixed="-l" />
 <content type="string" />
 <shortdesc>Username/Login (if required) to control power on IPMI device</
shortdesc>
 </parameter>
 <parameter name="action" unique="1">

Example

89

 <getopt mixed="-o" />
 <content type="string" default="reboot"/>
 <shortdesc>Operation to perform. Valid operations: on, off, reboot, status,
 list, diag, monitor or metadata</shortdesc>
 </parameter>
 <parameter name="timeout" unique="1">
 <getopt mixed="-t" />
 <content type="string" />
 <shortdesc>Timeout (sec) for IPMI operation</shortdesc>
 </parameter>
 <parameter name="cipher" unique="1">
 <getopt mixed="-C" />
 <content type="string" />
 <shortdesc>Ciphersuite to use (same as ipmitool -C parameter)</shortdesc>
 </parameter>
 <parameter name="method" unique="1">
 <getopt mixed="-M" />
 <content type="string" default="onoff"/>
 <shortdesc>Method to fence (onoff or cycle)</shortdesc>
 </parameter>
 <parameter name="power_wait" unique="1">
 <getopt mixed="-T" />
 <content type="string" default="2"/>
 <shortdesc>Wait X seconds after on/off operation</shortdesc>
 </parameter>
 <parameter name="delay" unique="1">
 <getopt mixed="-f" />
 <content type="string" />
 <shortdesc>Wait X seconds before fencing is started</shortdesc>
 </parameter>
 <parameter name="verbose" unique="1">
 <getopt mixed="-v" />
 <content type="boolean" />
 <shortdesc>Verbose mode</shortdesc>
 </parameter>
</parameters>
<actions>
 <action name="on" />
 <action name="off" />
 <action name="reboot" />
 <action name="status" />
 <action name="diag" />
 <action name="list" />
 <action name="monitor" />
 <action name="metadata" />
</actions>
</resource-agent>

from which we would create a STONITH resource fragment that might look like this

Sample STONITH Resource

crm crm(live)# cib new stonith
INFO: stonith shadow CIB created
crm(stonith)# configure primitive impi-fencing stonith::fence_ipmilan \
 params pcmk_host_list="pcmk-1 pcmk-2" ipaddr=10.0.0.1 login=testuser passwd=abc123 \
 op monitor interval="60s"

And finally, since we disabled it earlier, we need to re-enable STONITH. At this point we should have
the following configuration.

Now push the configuration into the cluster.

crm(stonith)# configure property stonith-enabled="true"

Chapter 13. Configure STONITH

90

crm(stonith)# configure shownode pcmk-1
node pcmk-2
primitive WebData ocf:linbit:drbd \
 params drbd_resource="wwwdata" \
 op monitor interval="60s"
primitive WebFS ocf:heartbeat:Filesystem \
 params device="/dev/drbd/by-res/wwwdata" directory="/var/www/html" fstype="gfs2"
primitive WebSite ocf:heartbeat:apache \
 params configfile="/etc/httpd/conf/httpd.conf" \
 op monitor interval="1min"
primitive ClusterIP ocf:heartbeat:IPaddr2 \
 params ip="192.168.122.101" cidr_netmask="32" clusterip_hash="sourceip" \
 op monitor interval="30s"primitive ipmi-fencing
 stonith::fence_ipmilan \ params pcmk_host_list="pcmk-1
 pcmk-2" ipaddr=10.0.0.1 login=testuser passwd=abc123 \ op monitor interval="60s"ms
 WebDataClone WebData \
 meta master-max="2" master-node-max="1" clone-max="2" clone-node-max="1" notify="true"
clone WebFSClone WebFS
clone WebIP ClusterIP \
 meta globally-unique="true" clone-max="2" clone-node-max="2"
clone WebSiteClone WebSite
colocation WebSite-with-WebFS inf: WebSiteClone WebFSClone
colocation fs_on_drbd inf: WebFSClone WebDataClone:Master
colocation website-with-ip inf: WebSiteClone WebIP
order WebFS-after-WebData inf: WebDataClone:promote WebFSClone:start
order WebSite-after-WebFS inf: WebFSClone WebSiteClone
order apache-after-ip inf: WebIP WebSiteClone
property $id="cib-bootstrap-options" \
 dc-version="1.1.5-bdd89e69ba545404d02445be1f3d72e6a203ba2f" \
 cluster-infrastructure="openais" \
 expected-quorum-votes="2" \
 stonith-enabled="true" \
 no-quorum-policy="ignore"
rsc_defaults $id="rsc-options" \
 resource-stickiness="100"
crm(stonith)# cib commit stonithINFO: commited 'stonith' shadow CIB to the cluster
crm(stonith)# quit
bye

Chapter 14.

91

Status - Here be dragons

Table of Contents
14.1. Node Status .. 91
14.2. Transient Node Attributes .. 92
14.3. Operation History .. 92

14.3.1. Simple Example ... 94
14.3.2. Complex Resource History Example .. 95

Most users never need to understand the contents of the status section and can be happy with the
output from crm_mon.

However for those with a curious inclination, this section attempts to provide an overview of its
contents.

14.1. Node Status

In addition to the cluster’s configuration, the CIB holds an up-to-date representation of each cluster
node in the status section.

Example 14.1. A bare-bones status entry for a healthy node called cl-virt-1

 <node_state id="cl-virt-1" uname="cl-virt-2" ha="active" in_ccm="true" crmd="online"
 join="member" expected="member" crm-debug-origin="do_update_resource">
 <transient_attributes id="cl-virt-1"/>
 <lrm id="cl-virt-1"/>
 </node_state>

Users are highly recommended not to modify any part of a node’s state directly. The cluster will
periodically regenerate the entire section from authoritative sources. So any changes should be done
with the tools for those subsystems.

Table 14.1. Authoritative Sources for State Information

Dataset Authoritative Source

node_state fields crmd

transient_attributes tag attrd

lrm tag lrmd

The fields used in the node_state objects are named as they are largely for historical reasons and
are rooted in Pacemaker’s origins as the Heartbeat resource manager.

They have remained unchanged to preserve compatibility with older versions.

Table 14.2. Node Status Fields

Field Description

id Unique identifier for the node. Corosync based clusters use the
uname of the machine, Heartbeat clusters use a human-readable
(but annoying) UUID.

Chapter 14. Status - Here be dragons

92

Field Description

uname The node’s machine name (output from uname -n).

ha Flag specifying whether the cluster software is active on the node.
Allowed values: active, dead.

in_ccm Flag for cluster membership; allowed values: true, false.

crmd Flag: is the crmd process active on the node? One of online,
offline.

join Flag saying whether the node participates in hosting resources.
Possible values: down, pending, member, banned.

expected Expected value for join.

crm-debug-origin Diagnostic indicator: the origin of the most recent change(s).

The cluster uses these fields to determine if, at the node level, the node is healthy or is in a failed state
and needs to be fenced.

14.2. Transient Node Attributes
Like regular node attributes, the name/value pairs listed here also help to describe the node. However
they are forgotten by the cluster when the node goes offline. This can be useful, for instance, when
you want a node to be in standby mode (not able to run resources) until the next reboot.

In addition to any values the administrator sets, the cluster will also store information about failed
resources here.

Example 14.2. Example set of transient node attributes for node "cl-virt-1"

 <transient_attributes id="cl-virt-1">
 <instance_attributes id="status-cl-virt-1">
 <nvpair id="status-cl-virt-1-pingd" name="pingd" value="3"/>
 <nvpair id="status-cl-virt-1-probe_complete" name="probe_complete" value="true"/>
 <nvpair id="status-cl-virt-1-fail-count-pingd:0" name="fail-count-pingd:0"
 value="1"/>
 <nvpair id="status-cl-virt-1-last-failure-pingd:0" name="last-failure-pingd:0"
 value="1239009742"/>
 </instance_attributes>
 </transient_attributes>

In the above example, we can see that the pingd:0 resource has failed once, at Mon Apr 6
11:22:22 2009. 1 We also see that the node is connected to three "pingd" peers and that all known
resources have been checked for on this machine (probe_complete).

14.3. Operation History

A node’s resource history is held in the lrm_resources tag (a child of the lrm tag). The information
stored here includes enough information for the cluster to stop the resource safely if it is removed from
the configuration section. Specifically the resource’s id, class, type and provider are stored.

1 You can use the standard date command to print a human readable of any seconds-since-epoch value: # date -d
@<parameter>number</parameter>

Operation History

93

Example 14.3. A record of the apcstonith resource

<lrm_resource id="apcstonith" type="apcmastersnmp" class="stonith"/>

Additionally, we store the last job for every combination of resource, action and interval. The
concatenation of the values in this tuple are used to create the id of the lrm_rsc_op object.

Table 14.3. Contents of an lrm_rsc_op job

Field Description

id

Identifier for the job constructed from the resource’s id,
operation and interval.

call-id

The job’s ticket number. Used as a sort key to determine the order
in which the jobs were executed.

operation

The action the resource agent was invoked with.

interval

The frequency, in milliseconds, at which the operation will be
repeated. A one-off job is indicated by 0.

op-status

The job’s status. Generally this will be either 0 (done) or -1
(pending). Rarely used in favor of rc-code.

rc-code

The job’s result. Refer to Section B.4, “OCF Return Codes”
for details on what the values here mean and how they are
interpreted.

last-run

Diagnostic indicator. Machine local date/time, in seconds since
epoch, at which the job was executed.

last-rc-change

Diagnostic indicator. Machine local date/time, in seconds since
epoch, at which the job first returned the current value of rc-code.

exec-time

Diagnostic indicator. Time, in milliseconds, that the job was running
for.

queue-time

Diagnostic indicator. Time, in seconds, that the job was queued for
in the LRMd.

crm_feature_set

Chapter 14. Status - Here be dragons

94

Field Description
The version which this job description conforms to. Used when
processing op-digest.

transition-key

A concatenation of the job’s graph action number, the graph
number, the expected result and the UUID of the crmd instance
that scheduled it. This is used to construct transition-magic
(below).

transition-magic

A concatenation of the job’s op-status, rc-code and
transition-key. Guaranteed to be unique for the life of the
cluster (which ensures it is part of CIB update notifications) and
contains all the information needed for the crmd to correctly
analyze and process the completed job. Most importantly, the
decomposed elements tell the crmd if the job entry was expected
and whether it failed.

op-digest

An MD5 sum representing the parameters passed to the job.
Used to detect changes to the configuration, to restart resources if
necessary.

crm-debug-origin

Diagnostic indicator. The origin of the current values.

14.3.1. Simple Example

Example 14.4. A monitor operation (determines current state of the apcstonith resource)

<lrm_resource id="apcstonith" type="apcmastersnmp" class="stonith">
 <lrm_rsc_op id="apcstonith_monitor_0" operation="monitor" call-id="2"
 rc-code="7" op-status="0" interval="0"
 crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
 op-digest="2e3da9274d3550dc6526fb24bfcbcba0"
 transition-key="22:2:7:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 transition-magic="0:7;22:2:7:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 last-run="1239008085" last-rc-change="1239008085" exec-time="10" queue-time="0"/>
</lrm_resource>

In the above example, the job is a non-recurring monitor operation often referred to as a "probe" for
the apcstonith resource.

The cluster schedules probes for every configured resource on when a new node starts, in order to
determine the resource’s current state before it takes any further action.

From the transition-key, we can see that this was the 22nd action of the 2nd graph produced by
this instance of the crmd (2668bbeb-06d5-40f9-936d-24cb7f87006a).

The third field of the transition-key contains a 7, this indicates that the job expects to find the
resource inactive.

By looking at the rc-code property, we see that this was the case.

Complex Resource History Example

95

As that is the only job recorded for this node we can conclude that the cluster started the resource
elsewhere.

14.3.2. Complex Resource History Example

Example 14.5. Resource history of a pingd clone with multiple jobs

<lrm_resource id="pingd:0" type="pingd" class="ocf" provider="pacemaker">
 <lrm_rsc_op id="pingd:0_monitor_30000" operation="monitor" call-id="34"
 rc-code="0" op-status="0" interval="30000"
 crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
 transition-key="10:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 ...
 last-run="1239009741" last-rc-change="1239009741" exec-time="10" queue-time="0"/>
 <lrm_rsc_op id="pingd:0_stop_0" operation="stop"
 crm-debug-origin="do_update_resource" crm_feature_set="3.0.1" call-id="32"
 rc-code="0" op-status="0" interval="0"
 transition-key="11:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 ...
 last-run="1239009741" last-rc-change="1239009741" exec-time="10" queue-time="0"/>
 <lrm_rsc_op id="pingd:0_start_0" operation="start" call-id="33"
 rc-code="0" op-status="0" interval="0"
 crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
 transition-key="31:11:0:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 ...
 last-run="1239009741" last-rc-change="1239009741" exec-time="10" queue-time="0" />
 <lrm_rsc_op id="pingd:0_monitor_0" operation="monitor" call-id="3"
 rc-code="0" op-status="0" interval="0"
 crm-debug-origin="do_update_resource" crm_feature_set="3.0.1"
 transition-key="23:2:7:2668bbeb-06d5-40f9-936d-24cb7f87006a"
 ...
 last-run="1239008085" last-rc-change="1239008085" exec-time="20" queue-time="0"/>
 </lrm_resource>

When more than one job record exists, it is important to first sort them by call-id before interpreting
them.

Once sorted, the above example can be summarized as:

1. A non-recurring monitor operation returning 7 (not running), with a call-id of 3

2. A stop operation returning 0 (success), with a call-id of 32

3. A start operation returning 0 (success), with a call-id of 33

4. A recurring monitor returning 0 (success), with a call-id of 34

The cluster processes each job record to build up a picture of the resource’s state. After the first and
second entries, it is considered stopped and after the third it considered active.

Based on the last operation, we can tell that the resource is currently active.

Additionally, from the presence of a stop operation with a lower call-id than that of the start
operation, we can conclude that the resource has been restarted. Specifically this occurred as part of
actions 11 and 31 of transition 11 from the crmd instance with the key 2668bbeb…. This information
can be helpful for locating the relevant section of the logs when looking for the source of a failure.

96

Chapter 15.

97

Multi-Site Clusters and Tickets

Table of Contents
15.1. Abstract .. 97
15.2. Challenges for Multi-Site Clusters .. 97
15.3. Conceptual Overview .. 97

15.3.1. Components and Concepts ... 98
15.4. Configuring Ticket Dependencies ... 99
15.5. Managing Multi-Site Clusters ... 100

15.5.1. Granting and Revoking Tickets Manually ... 100
15.5.2. Granting and Revoking Tickets via a Cluster Ticket Registry 100
15.5.3. General Management of Tickets .. 102

15.6. For more information ... 102

15.1. Abstract
Apart from local clusters, Pacemaker also supports multi-site clusters. That means you can have
multiple, geographically dispersed sites with a local cluster each. Failover between these clusters can
be coordinated by a higher level entity, the so-called CTR (Cluster Ticket Registry).

15.2. Challenges for Multi-Site Clusters
Typically, multi-site environments are too far apart to support synchronous communication between
the sites and synchronous data replication. That leads to the following challenges:

• How to make sure that a cluster site is up and running?

• How to make sure that resources are only started once?

• How to make sure that quorum can be reached between the different sites and a split brain scenario
can be avoided?

• How to manage failover between the sites?

• How to deal with high latency in case of resources that need to be stopped?

In the following sections, learn how to meet these challenges.

15.3. Conceptual Overview
Multi-site clusters can be considered as “overlay” clusters where each cluster site corresponds to
a cluster node in a traditional cluster. The overlay cluster can be managed by a CTR (Cluster
Ticket Registry) mechanism. It guarantees that the cluster resources will be highly available
across different cluster sites. This is achieved by using so-called tickets that are treated as failover
domain between cluster sites, in case a site should be down.

The following list explains the individual components and mechanisms that were introduced for multi-
site clusters in more detail.

Chapter 15. Multi-Site Clusters and Tickets

98

15.3.1. Components and Concepts

15.3.1.1. Ticket
"Tickets" are, essentially, cluster-wide attributes. A ticket grants the right to run certain resources on
a specific cluster site. Resources can be bound to a certain ticket by rsc_ticket dependencies.
Only if the ticket is available at a site, the respective resources are started. Vice versa, if the ticket is
revoked, the resources depending on that ticket need to be stopped.

The ticket thus is similar to a site quorum; i.e., the permission to manage/own resources associated
with that site.

(One can also think of the current have-quorum flag as a special, cluster-wide ticket that is granted in
case of node majority.)

These tickets can be granted/revoked either manually by administrators (which could be the default for
the classic enterprise clusters), or via an automated CTR mechanism described further below.

A ticket can only be owned by one site at a time. Initially, none of the sites has a ticket. Each ticket
must be granted once by the cluster administrator.

The presence or absence of tickets for a site is stored in the CIB as a cluster status. With regards to a
certain ticket, there are only two states for a site: true (the site has the ticket) or false (the site does
not have the ticket). The absence of a certain ticket (during the initial state of the multi-site cluster) is
also reflected by the value false.

15.3.1.2. Dead Man Dependency
A site can only activate the resources safely if it can be sure that the other site has deactivated
them. However after a ticket is revoked, it can take a long time until all resources depending on that
ticket are stopped "cleanly", especially in case of cascaded resources. To cut that process short, the
concept of a Dead Man Dependency was introduced:

• If the ticket is revoked from a site, the nodes that are hosting dependent resources are fenced. This
considerably speeds up the recovery process of the cluster and makes sure that resources can be
migrated more quickly.

This can be configured by specifying a loss-policy="fence" in rsc_ticket constraints.

15.3.1.3. CTR (Cluster Ticket Registry)
This is for those scenarios where the tickets management is supposed to be automatic (instead of the
administrator revoking the ticket somewhere, waiting for everything to stop, and then granting it on the
desired site).

A CTR is a network daemon that handles granting, revoking, and timing out "tickets". The participating
clusters would run the daemons that would connect to each other, exchange information on their
connectivity details, and vote on which site gets which ticket(s).

A ticket would only be granted to a site once they can be sure that it has been relinquished by the
previous owner, which would need to be implemented via a timer in most scenarios. If a site loses
connection to its peers, its tickets time out and recovery occurs. After the connection timeout plus
the recovery timeout has passed, the other sites are allowed to re-acquire the ticket and start the
resources again.

This can also be thought of as a "quorum server", except that it is not a single quorum ticket, but
several.

Configuring Ticket Dependencies

99

15.3.1.4. Configuration Replication
As usual, the CIB is synchronized within each cluster, but it is not synchronized across cluster sites of
a multi-site cluster. You have to configure the resources that will be highly available across the multi-
site cluster for every site accordingly.

15.4. Configuring Ticket Dependencies
The rsc_ticket constraint lets you specify the resources depending on a certain ticket. Together
with the constraint, you can set a loss-policy that defines what should happen to the respective
resources if the ticket is revoked.

The attribute loss-policy can have the following values:

 fence
Fence the nodes that are running the relevant resources.

 stop
Stop the relevant resources.

 freeze
Do nothing to the relevant resources.

 demote
Demote relevant resources that are running in master mode to slave mode.

An example to configure a rsc_ticket constraint:

<rsc_ticket id="rsc1-req-ticketA" rsc="rsc1" ticket="ticketA" loss-policy="fence"/>

This creates a constraint with the ID rsc1-req-ticketA. It defines that the resource rsc1 depends
on ticketA and that the node running the resource should be fenced in case ticketA is revoked.

If resource rsc1 was a multi-state resource that can run in master or slave mode, you may want to
configure that only rsc1's master mode depends on ticketA. With the following configuration,
rsc1 will be demoted to slave mode if ticketA is revoked:

<rsc_ticket id="rsc1-req-ticketA" rsc="rsc1" rsc-role="Master" ticket="ticketA" loss-
policy="demote"/>

You can create more rsc_ticket constraints to let multiple resources depend on the same ticket.

rsc_ticket also supports resource sets. So one can easily list all the resources in one rsc_ticket
constraint. For example:

 <rsc_ticket id="resources-dep-ticketA" ticket="ticketA" loss-policy="fence">
 <resource_set id="resources-dep-ticketA-0" role="Started">
 <resource_ref id="rsc1"/>
 <resource_ref id="group1"/>
 <resource_ref id="clone1"/>
 </resource_set>
 <resource_set id="resources-dep-ticketA-1" role="Master">
 <resource_ref id="ms1"/>
 </resource_set>
 </rsc_ticket>

In the example, there are two resource sets for listing the resources with different roles in one
rsc_ticket constraint. There’s no dependency between the two resource sets. And there’s no

Chapter 15. Multi-Site Clusters and Tickets

100

dependency among the resources within a resource set. Each of the resources just depends on
ticketA.

Referencing resource templates in rsc_ticket constraints, and even referencing them within
resource sets, is also supported.

If you want other resources to depend on further tickets, create as many constraints as necessary with
rsc_ticket.

15.5. Managing Multi-Site Clusters

15.5.1. Granting and Revoking Tickets Manually
You can grant tickets to sites or revoke them from sites manually. Though if you want to re-distribute
a ticket, you should wait for the dependent resources to cleanly stop at the previous site before you
grant the ticket to another desired site.

Use the crm_ticket command line tool to grant and revoke tickets.

To grant a ticket to this site:

crm_ticket --ticket ticketA --grant

To revoke a ticket from this site:

crm_ticket --ticket ticketA --revoke

Important

If you are managing tickets manually. Use the crm_ticket command with great care as they
cannot help verify if the same ticket is already granted elsewhere.

15.5.2. Granting and Revoking Tickets via a Cluster Ticket Registry

15.5.2.1. Booth
Booth is an implementation of Cluster Ticket Registry or so-called Cluster Ticket
Manager.

Booth is the instance managing the ticket distribution and thus, the failover process between the sites
of a multi-site cluster. Each of the participating clusters and arbitrators runs a service, the boothd. It
connects to the booth daemons running at the other sites and exchanges connectivity details. Once a
ticket is granted to a site, the booth mechanism will manage the ticket automatically: If the site which
holds the ticket is out of service, the booth daemons will vote which of the other sites will get the ticket.
To protect against brief connection failures, sites that lose the vote (either explicitly or implicitly by
being disconnected from the voting body) need to relinquish the ticket after a time-out. Thus, it is
made sure that a ticket will only be re-distributed after it has been relinquished by the previous site.
The resources that depend on that ticket will fail over to the new site holding the ticket. The nodes
that have run the resources before will be treated according to the loss-policy you set within the
rsc_ticket constraint.

Granting and Revoking Tickets via a Cluster Ticket Registry

101

Before the booth can manage a certain ticket within the multi-site cluster, you initially need to grant it
to a site manually via booth client command. After you have initially granted a ticket to a site, the
booth mechanism will take over and manage the ticket automatically.

Important

The booth client command line tool can be used to grant, list, or revoke tickets. The booth
client commands work on any machine where the booth daemon is running.

If you are managing tickets via Booth, only use booth client for manual intervention instead
of crm_ticket. That can make sure the same ticket will only be owned by one cluster site at a
time.

Booth includes an implementation of Paxos1 and Paxos Lease algorithm, which guarantees the
distributed consensus among different cluster sites.

Note

Arbitrator

Each site runs one booth instance that is responsible for communicating with the other sites.
If you have a setup with an even number of sites, you need an additional instance to reach
consensus about decisions such as failover of resources across sites. In this case, add one
or more arbitrators running at additional sites. Arbitrators are single machines that run a booth
instance in a special mode. As all booth instances communicate with each other, arbitrators help
to make more reliable decisions about granting or revoking tickets.

An arbitrator is especially important for a two-site scenario: For example, if site A can no longer
communicate with site B, there are two possible causes for that:

• A network failure between A and B.

• Site B is down.

However, if site C (the arbitrator) can still communicate with site B, site B must still be up and
running.

15.5.2.1.1. Requirements
• All clusters that will be part of the multi-site cluster must be based on Pacemaker.

• Booth must be installed on all cluster nodes and on all arbitrators that will be part of the multi-site
cluster.

The most common scenario is probably a multi-site cluster with two sites and a single arbitrator on a
third site. However, technically, there are no limitations with regards to the number of sites and the
number of arbitrators involved.

1 http://en.wikipedia.org/wiki/Paxos_algorithm

http://en.wikipedia.org/wiki/Paxos_algorithm
http://en.wikipedia.org/wiki/Paxos_algorithm

Chapter 15. Multi-Site Clusters and Tickets

102

Nodes belonging to the same cluster site should be synchronized via NTP. However, time
synchronization is not required between the individual cluster sites.

15.5.3. General Management of Tickets
Display the information of tickets:

crm_ticket --info

Or you can monitor them with:

crm_mon --tickets

Display the rsc_ticket constraints that apply to a ticket:

crm_ticket --ticket ticketA --constraints

When you want to do maintenance or manual switch-over of a ticket, the ticket could be revoked
from the site for any reason, which would trigger the loss-policies. If loss-policy="fence", the
dependent resources could not be gracefully stopped/demoted, and even, other unrelated resources
could be impacted.

The proper way is making the ticket standby first with:

crm_ticket --ticket ticketA --standby

Then the dependent resources will be stopped or demoted gracefully without triggering the loss-
policies.

If you have finished the maintenance and want to activate the ticket again, you can run:

crm_ticket --ticket ticketA --activate

15.6. For more information
Multi-site Clustershttp://doc.opensuse.org/products/draft/SLE-HA/SLE-ha-guide_sd_draft/
cha.ha.geo.html

Boothhttps://github.com/ClusterLabs/booth

http://doc.opensuse.org/products/draft/SLE-HA/SLE-ha-guide_sd_draft/cha.ha.geo.html
http://doc.opensuse.org/products/draft/SLE-HA/SLE-ha-guide_sd_draft/cha.ha.geo.html
https://github.com/ClusterLabs/booth

103

Appendix A. FAQ
A.1. History

Q: Why is the Project Called Pacemaker?

A: First of all, the reason its not called the CRM is because of the abundance of terms1 that are
commonly abbreviated to those three letters.

The Pacemaker name came from Kham2, a good friend of mine, and was originally used by
a Java GUI that I was prototyping in early 2007. Alas other commitments have prevented the
GUI from progressing much and, when it came time to choose a name for this project, Lars
suggested it was an even better fit for an independent CRM.

The idea stems from the analogy between the role of this software and that of the little device
that keeps the human heart pumping. Pacemaker monitors the cluster and intervenes when
necessary to ensure the smooth operation of the services it provides.

There were a number of other names (and acronyms) tossed around, but suffice to say
"Pacemaker" was the best

Q: Why was the Pacemaker Project Created?

A: The decision was made to spin-off the CRM into its own project after the 2.1.3 Heartbeat release
in order to
• support both the Corosync and Heartbeat cluster stacks equally
• decouple the release cycles of two projects at very different stages of their life-cycles
• foster the clearer package boundaries, thus leading to
• better and more stable interfaces

A.2. Setup

Q: What Messaging Layers are Supported?

A: • Corosync (http://www.corosync.org/)
• Heartbeat (http://linux-ha.org/)

Q: Can I Choose which Messaging Layer to use at Run Time?

A: Yes. The CRM will automatically detect which started it and behave accordingly.

Q: Can I Have a Mixed Heartbeat-Corosync Cluster?

A: No.

Q: Which Messaging Layer Should I Choose?

A: This is discussed in Appendix D, Installation.

1 http://en.wikipedia.org/wiki/CRM
2 http://khamsouk.souvanlasy.com/

http://www.corosync.org/
http://linux-ha.org/
http://en.wikipedia.org/wiki/CRM
http://khamsouk.souvanlasy.com/

Appendix A. FAQ

104

Q: Where Can I Get Pre-built Packages?

A: Official packages for most major .rpm and based distributions are available from the ClusterLabs
Website3.

For Debian packages, building from source and details on using the above repositories, see our
installation page4.

Q: What Versions of Pacemaker Are Supported?

A: Please refer to the Releases page5 for an up-to-date list of versions supported directly by the
project.

When seeking assistance, please try to ensure you have one of these versions.

3 http://www.clusterlabs.org/rpm
4 http://clusterlabs.org/wiki/Install
5 http://clusterlabs.org/wiki/Releases

http://www.clusterlabs.org/rpm
http://clusterlabs.org/wiki/Install
http://clusterlabs.org/wiki/Releases

105

Appendix B. More About OCF Resource
Agents

Table of Contents
B.1. Location of Custom Scripts ... 105
B.2. Actions ... 105
B.3. How are OCF Return Codes Interpreted? .. 106
B.4. OCF Return Codes ... 106
B.5. Exceptions .. 107

B.1. Location of Custom Scripts
 OCF Resource Agents are found in /usr/lib/ocf/resource.d/provider.

When creating your own agents, you are encouraged to create a new directory under /usr/lib/ocf/
resource.d/ so that they are not confused with (or overwritten by) the agents shipped with Heartbeat.

So, for example, if you chose the provider name of bigCorp and wanted a new resource named
bigApp, you would create a script called /usr/lib/ocf/resource.d/bigCorp/bigApp and define a resource:

<primitive id="custom-app" class="ocf" provider="bigCorp" type="bigApp"/>

B.2. Actions
All OCF Resource Agents are required to implement the following actions

Table B.1. Required Actions for OCF Agents

Action Description Instructions

start Start the resource Return 0 on success and an appropriate error
code otherwise. Must not report success until the
resource is fully active.

stop Stop the resource Return 0 on success and an appropriate error
code otherwise. Must not report success until the
resource is fully stopped.

monitor Check the
resource’s state

Exit 0 if the resource is running, 7 if it is stopped,
and anything else if it is failed.

NOTE: The monitor script should test the state of
the resource on the local machine only.

meta-data Describe the
resource

Provide information about this resource as an
XML snippet. Exit with 0.

NOTE: This is not performed as root.

validate-all Verify the supplied
parameters

Exit with 0 if parameters are valid, 2 if not valid, 6
if resource is not configured.

Additional requirements (not part of the OCF specs) are placed on agents that will be used for
advanced concepts like clones and multi-state resources.

Appendix B. More About OCF Resource Agents

106

Table B.2. Optional Actions for OCF Agents

Action Description Instructions

promote Promote the local instance of a multi-state resource
to the master/primary state.

Return 0 on success

demote Demote the local instance of a multi-state resource
to the slave/secondary state.

Return 0 on success

notify Used by the cluster to send the agent pre and post
notification events telling the resource what has
happened and will happen.

Must not fail. Must exit
with 0

One action specified in the OCF specs is not currently used by the cluster:

• recover - a variant of the start action, this should try to recover a resource locally.

Remember to use ocf-tester to verify that your new agent complies with the OCF standard
properly.

B.3. How are OCF Return Codes Interpreted?
The first thing the cluster does is to check the return code against the expected result. If the result
does not match the expected value, then the operation is considered to have failed and recovery
action is initiated.

There are three types of failure recovery:

Table B.3. Types of recovery performed by the cluster

Type Description Action Taken by the Cluster

soft A transient error occurred Restart the resource or move it to a new
location

hard A non-transient error that may be
specific to the current node occurred

Move the resource elsewhere and
prevent it from being retried on the
current node

fatal A non-transient error that will be
common to all cluster nodes (eg. a bad
configuration was specified)

Stop the resource and prevent it from
being started on any cluster node

Assuming an action is considered to have failed, the following table outlines the different OCF return
codes and the type of recovery the cluster will initiate when it is received.

B.4. OCF Return Codes

Table B.4. OCF Return Codes and their Recovery Types

RC OCF Alias Description RT

0 OCF_SUCCESS Success. The command completed
successfully. This is the expected result
for all start, stop, promote and demote
commands.

soft

1 OCF_ERR_GENERIC Generic "there was a problem" error
code.

soft

Exceptions

107

RC OCF Alias Description RT

2 OCF_ERR_ARGS The resource’s configuration is not
valid on this machine. Eg. refers to a
location/tool not found on the node.

hard

3 OCF_ERR_UNIMPLEMENTED The requested action is not
implemented.

hard

4 OCF_ERR_PERM The resource agent does not have
sufficient privileges to complete the
task.

hard

5 OCF_ERR_INSTALLED The tools required by the resource are
not installed on this machine.

hard

6 OCF_ERR_CONFIGURED The resource’s configuration is invalid.
Eg. required parameters are missing.

fatal

7 OCF_NOT_RUNNING The resource is safely stopped. The
cluster will not attempt to stop a
resource that returns this for any action.

N/A

8 OCF_RUNNING_MASTER The resource is running in Master
mode.

soft

9 OCF_FAILED_MASTER The resource is in Master mode
but has failed. The resource will be
demoted, stopped and then started
(and possibly promoted) again.

soft

other NA Custom error code. soft

Although counterintuitive, even actions that return 0 (aka. OCF_SUCCESS) can be considered to have
failed.

B.5. Exceptions
• Non-recurring monitor actions (probes) that find a resource active (or in Master mode) will not result

in recovery action unless it is also found active elsewhere

• The recovery action taken when a resource is found active more than once is determined by the
multiple-active property of the resource

• Recurring actions that return OCF_ERR_UNIMPLEMENTED do not cause any type of recovery

108

109

Appendix C. What Changed in 1.0

Table of Contents
C.1. New ... 109
C.2. Changed .. 109
C.3. Removed .. 110

C.1. New
• Failure timeouts. See Section 9.3.2, “Moving Resources Due to Failure”

• New section for resource and operation defaults. See Section 5.5, “Setting Global Defaults for
Resource Options” and Section 5.7.2, “Setting Global Defaults for Operations”

• Tool for making offline configuration changes. See Section 2.6, “Making Configuration Changes in a
Sandbox”

• Rules, instance_attributes, meta_attributes and sets of operations can be defined
once and referenced in multiple places. See Section 9.4, “Reusing Rules, Options and Sets of
Operations”

• The CIB now accepts XPath-based create/modify/delete operations. See the cibadmin help text.

• Multi-dimensional colocation and ordering constraints. See Section 6.5, “Ordering Sets of
Resources” and Section 6.9, “Collocating Sets of Resources”

• The ability to connect to the CIB from non-cluster machines. See Section 9.1, “Connecting from a
Remote Machine”

• Allow recurring actions to be triggered at known times. See Section 9.2, “Specifying When Recurring
Actions are Performed”

C.2. Changed
• Syntax

• All resource and cluster options now use dashes (-) instead of underscores (_)

• master_slave was renamed to master

• The attributes container tag was removed

• The operation field pre-req has been renamed requires

• All operations must have an interval, start/stop must have it set to zero

• The stonith-enabled option now defaults to true.

• The cluster will refuse to start resources if stonith-enabled is true (or unset) and no STONITH
resources have been defined

• The attributes of colocation and ordering constraints were renamed for clarity. See Section 6.3,
“Specifying in which Order Resources Should Start/Stop” and Section 6.4, “Placing Resources
Relative to other Resources”

Appendix C. What Changed in 1.0

110

• resource-failure-stickiness has been replaced by migration-threshold. See
Section 9.3.2, “Moving Resources Due to Failure”

• The parameters for command-line tools have been made consistent

• Switched to RelaxNG schema validation and libxml2 parser

• id fields are now XML IDs which have the following limitations:

• id’s cannot contain colons (:)

• id’s cannot begin with a number

• id’s must be globally unique (not just unique for that tag)

• Some fields (such as those in constraints that refer to resources) are IDREFs.

This means that they must reference existing resources or objects in order for the configuration to
be valid. Removing an object which is referenced elsewhere will therefore fail.

• The CIB representation, from which a MD5 digest is calculated to verify CIBs on the nodes, has
changed.

This means that every CIB update will require a full refresh on any upgraded nodes until the
cluster is fully upgraded to 1.0. This will result in significant performance degradation and it
is therefore highly inadvisable to run a mixed 1.0/0.6 cluster for any longer than absolutely
necessary.

• Ping node information no longer needs to be added to ha.cf.

Simply include the lists of hosts in your ping resource(s).

C.3. Removed
• Syntax

• It is no longer possible to set resource meta options as top-level attributes. Use meta attributes
instead.

• Resource and operation defaults are no longer read from crm_config. See Section 5.5, “Setting
Global Defaults for Resource Options” and Section 5.7.2, “Setting Global Defaults for Operations”
instead.

111

Appendix D. Installation

Table of Contents
D.1. Choosing a Cluster Stack ... 111
D.2. Enabling Pacemaker ... 111

D.2.1. For Corosync ... 111
D.2.2. For Heartbeat .. 113

Warning

The following text may no longer be accurate in some places.

D.1. Choosing a Cluster Stack

Ultimately the choice of cluster stack is a personal decision that must be made in the context of you
or your company’s needs and strategic direction. Pacemaker currently functions equally well with both
stacks.

Here are some factors that may influence the decision:

• SUSE/Novell, Red Hat and Oracle are all putting their collective weight behind the Corosync cluster
stack.

• Using Corosync gives your applications access to the following additional cluster services

• distributed locking service

• extended virtual synchronization service

• cluster closed process group service

• It is likely that Pacemaker, at some point in the future, will make use of some of these additional
services not provided by Heartbeat

D.2. Enabling Pacemaker

D.2.1. For Corosync
The Corosync configuration is normally located in /etc/corosync/corosync.conf and an example
for a machine with an address of 1.2.3.4 in a cluster communicating on port 1234 (without peer
authentication and message encryption) is shown below.

An example Corosync configuration file

 totem {
 version: 2

Appendix D. Installation

112

 secauth: off
 threads: 0
 interface {
 ringnumber: 0
 bindnetaddr: 1.2.3.4
 mcastaddr: 239.255.1.1
 mcastport: 1234
 }
 }
 logging {
 fileline: off
 to_syslog: yes
 syslog_facility: daemon
 }
 amf {
 mode: disabled
 }

The logging should be mostly obvious and the amf section refers to the Availability Management
Framework and is not covered in this document.

The interesting part of the configuration is the totem section. This is where we define how the node
can communicate with the rest of the cluster and what protocol version and options (including
encryption 1) it should use. Beginners are encouraged to use the values shown and modify the
interface section based on their network.

It is also possible to configure Corosync for an IPv6 based environment. Simply configure
bindnetaddr and mcastaddr with their IPv6 equivalents, eg.

Example options for an IPv6 environment

 bindnetaddr: fec0::1:a800:4ff:fe00:20
 mcastaddr: ff05::1

To tell Corosync to use the Pacemaker cluster manager, add the following fragment to a functional
Corosync configuration and restart the cluster.

Configuration fragment for enabling Pacemaker under Corosync

aisexec {
 user: root
 group: root
}
service {
 name: pacemaker
 ver: 0
}

The cluster needs to be run as root so that its child processes (the lrmd in particular) have sufficient
privileges to perform the actions requested of it. After all, a cluster manager that can’t add an IP
address or start apache is of little use.

The second directive is the one that actually instructs the cluster to run Pacemaker.

1 Please consult the Corosync website (http://www.corosync.org/) and documentation for details on enabling encryption and
peer authentication for the cluster.

http://www.corosync.org/

For Heartbeat

113

D.2.2. For Heartbeat
Add the following to a functional ha.cf configuration file and restart Heartbeat:

Configuration fragment for enabling Pacemaker under Heartbeat

crm respawn

114

115

Appendix E. Upgrading Cluster
Software

Table of Contents
E.1. Version Compatibility .. 115
E.2. Complete Cluster Shutdown .. 116

E.2.1. Procedure .. 116
E.3. Rolling (node by node) .. 116

E.3.1. Procedure .. 116
E.3.2. Version Compatibility .. 116
E.3.3. Crossing Compatibility Boundaries .. 117

E.4. Disconnect and Reattach .. 117
E.4.1. Procedure .. 117
E.4.2. Notes ... 118

E.1. Version Compatibility
When releasing newer versions we take care to make sure we are backwards compatible with
older versions. While you will always be able to upgrade from version x to x+1, in order to continue
to produce high quality software it may occasionally be necessary to drop compatibility with older
versions.

There will always be an upgrade path from any series-2 release to any other series-2 release.

There are three approaches to upgrading your cluster software:

• Complete Cluster Shutdown

• Rolling (node by node)

• Disconnect and Reattach

Each method has advantages and disadvantages, some of which are listed in the table below, and you
should chose the one most appropriate to your needs.

Table E.1. Summary of Upgrade Methodologies

Type Available
between all
software
versions

Service
Outage
During
Upgrade

Service
Recovery
During
Upgrade

Exercises
Failover
Logic/
Configuration

Allows
change of
cluster stack
type 1

Shutdown yes always N/A no yes

Rolling no always yes yes no

Reattach yes only due to
failure

no no yes

1 For example, switching from Heartbeat to Corosync. Consult the Heartbeat or Corosync documentation to see if upgrading
them to a newer version is also supported.

Appendix E. Upgrading Cluster Software

116

E.2. Complete Cluster Shutdown
In this scenario one shuts down all cluster nodes and resources and upgrades all the nodes before
restarting the cluster.

E.2.1. Procedure
1. On each node:

a. Shutdown the cluster stack (Heartbeat or Corosync)

b. Upgrade the Pacemaker software. This may also include upgrading the cluster stack and/or
the underlying operating system.

c. Check the configuration manually or with the crm_verify tool if available.

2. On each node:

a. Start the cluster stack. This can be either Corosync or Heartbeat and does not need to be the
same as the previous cluster stack.

E.3. Rolling (node by node)
In this scenario each node is removed from the cluster, upgraded and then brought back online until all
nodes are running the newest version.

Important

This method is currently broken between Pacemaker 0.6.x and 1.0.x.

Measures have been put into place to ensure rolling upgrades always work for versions after
1.0.0. Please try one of the other upgrade strategies. Detach/Reattach is a particularly good
option for most people.

E.3.1. Procedure
On each node: . Shutdown the cluster stack (Heartbeat or Corosync) . Upgrade the Pacemaker
software. This may also include upgrading the cluster stack and/or the underlying operating system. ..
On the first node, check the configuration manually or with the crm_verify tool if available. .. Start
the cluster stack.

+ This must be the same type of cluster stack (Corosync or Heartbeat) that the rest of the cluster is
using. Upgrading Corosync/Heartbeat may also be possible, please consult the documentation for
those projects to see if the two versions will be compatible.

+ .. Repeat for each node in the cluster.

E.3.2. Version Compatibility

Table E.2. Version Compatibility Table

Version being Installed Oldest Compatible Version

Pacemaker 1.0.x Pacemaker 1.0.0

Crossing Compatibility Boundaries

117

Version being Installed Oldest Compatible Version

Pacemaker 0.7.x Pacemaker 0.6 or Heartbeat 2.1.3

Pacemaker 0.6.x Heartbeat 2.0.8

Heartbeat 2.1.3 (or less) Heartbeat 2.0.4

Heartbeat 2.0.4 (or less) Heartbeat 2.0.0

Heartbeat 2.0.0 None. Use an alternate upgrade strategy.

E.3.3. Crossing Compatibility Boundaries
Rolling upgrades that cross compatibility boundaries must be preformed in multiple steps. For
example, to perform a rolling update from Heartbeat 2.0.1 to Pacemaker 0.6.6 one must:

1. Perform a rolling upgrade from Heartbeat 2.0.1 to Heartbeat 2.0.4

2. Perform a rolling upgrade from Heartbeat 2.0.4 to Heartbeat 2.1.3

3. Perform a rolling upgrade from Heartbeat 2.1.3 to Pacemaker 0.6.6

E.4. Disconnect and Reattach
A variant of a complete cluster shutdown, but the resources are left active and get re-detected when
the cluster is restarted.

E.4.1. Procedure
1. Tell the cluster to stop managing services.

This is required to allow the services to remain active after the cluster shuts down.

crm_attribute -t crm_config -n is-managed-default -v false

2. For any resource that has a value for is-managed, make sure it is set to false (so that the
cluster will not stop it)

crm_resource -t primitive -r $rsc_id -p is-managed -v false

3. On each node:

a. Shutdown the cluster stack (Heartbeat or Corosync)

b. Upgrade the cluster stack program - This may also include upgrading the underlying operating
system.

4. Check the configuration manually or with the crm_verify tool if available.

5. On each node:

a. Start the cluster stack.

This can be either Corosync or Heartbeat and does not need to be the same as the previous
cluster stack.

6. Verify that the cluster re-detected all resources correctly.

Appendix E. Upgrading Cluster Software

118

7. Allow the cluster to resume managing resources again:

crm_attribute -t crm_config -n is-managed-default -v true

8. For any resource that has a value for is-managed reset it to true (so the cluster can recover the
service if it fails) if desired:

crm_resource -t primitive -r $rsc_id -p is-managed -v true

E.4.2. Notes

Important

Always check your existing configuration is still compatible with the version you are installing
before starting the cluster.

Note

The oldest version of the CRM to support this upgrade type was in Heartbeat 2.0.4

119

Appendix F. Upgrading the
Configuration from 0.6

Table of Contents
F.1. Preparation ... 119
F.2. Perform the upgrade ... 119

F.2.1. Upgrade the software ... 119
F.2.2. Upgrade the Configuration .. 119
F.2.3. Manually Upgrading the Configuration ... 121

F.1. Preparation

Download the latest DTD1 and ensure your configuration validates.

F.2. Perform the upgrade

F.2.1. Upgrade the software
Refer to the appendix: Appendix E, Upgrading Cluster Software

F.2.2. Upgrade the Configuration
As XML is not the friendliest of languages, it is common for cluster administrators to have scripted
some of their activities. In such cases, it is likely that those scripts will not work with the new 1.0
syntax.

In order to support such environments, it is actually possible to continue using the old 0.6 syntax.

The downside is, however, that not all the new features will be available and there is a performance
impact since the cluster must do a non-persistent configuration upgrade before each transition. So
while using the old syntax is possible, it is not advisable to continue using it indefinitely.

Even if you wish to continue using the old syntax, it is advisable to follow the upgrade procedure to
ensure that the cluster is able to use your existing configuration (since it will perform much the same
task internally).

1. Create a shadow copy to work with

crm_shadow --create upgrade06

2. Verify the configuration is valid

1 http://hg.clusterlabs.org/pacemaker/stable-1.0/file-raw/tip/xml/crm.dtd

http://hg.clusterlabs.org/pacemaker/stable-1.0/file-raw/tip/xml/crm.dtd
http://hg.clusterlabs.org/pacemaker/stable-1.0/file-raw/tip/xml/crm.dtd

Appendix F. Upgrading the Configuration from 0.6

120

crm_verify --live-check

3. Fix any errors or warnings

4. Perform the upgrade:

cibadmin --upgrade

5. If this step fails, there are three main possibilities:

a. The configuration was not valid to start with - go back to step 2

b. The transformation failed - report a bug or email the project2

c. The transformation was successful but produced an invalid result 3

If the result of the transformation is invalid, you may see a number of errors from the validation
library. If these are not helpful, visit http://clusterlabs.org/wiki/Validation_FAQ and/or try the
procedure described below under Section F.2.3, “Manually Upgrading the Configuration”

6. Check the changes

crm_shadow --diff

If at this point there is anything about the upgrade that you wish to fine-tune (for example, to
change some of the automatic IDs) now is the time to do so. Since the shadow configuration is not
in use by the cluster, it is safe to edit the file manually:

crm_shadow --edit

This will open the configuration in your favorite editor (whichever is specified by the standard
$EDITOR environment variable)

7. Preview how the cluster will react

Test what the cluster will do when you upload the new configuration

crm_simulate --live-check --save-dotfile upgrade06.dot -S
graphviz upgrade06.dot

Verify that either no resource actions will occur or that you are happy with any that are
scheduled. If the output contains actions you do not expect (possibly due to changes to the score
calculations), you may need to make further manual changes. See Section 2.7, “Testing Your
Configuration Changes” for further details on how to interpret the output of crm_simulate

8. Upload the changes

crm_shadow --commit upgrade06 --force

2 mailto:pacemaker@oss.clusterlabs.org?subject=Transformation%20failed%20during%20upgrade
3 The most common reason is ID values being repeated or invalid. Pacemaker 1.0 is much stricter regarding this type of
validation.

mailto:pacemaker@oss.clusterlabs.org?subject=Transformation%20failed%20during%20upgrade
http://clusterlabs.org/wiki/Validation_FAQ
mailto:pacemaker@oss.clusterlabs.org?subject=Transformation%20failed%20during%20upgrade

Manually Upgrading the Configuration

121

If this step fails, something really strange has occurred. You should report a bug.

F.2.3. Manually Upgrading the Configuration
 It is also possible to perform the configuration upgrade steps manually. To do this

Locate the upgrade06.xsl conversion script or download the latest version from Git4

1. Convert the XML blob:

xsltproc /path/to/upgrade06.xsl config06.xml > config10.xml

2. Locate the pacemaker.rng script.

3. Check the XML validity:

xmllint --relaxng /path/to/pacemaker.rng config10.xml

The advantage of this method is that it can be performed without the cluster running and any validation
errors should be more informative (despite being generated by the same library!) since they include
line numbers.

4 https://github.com/ClusterLabs/pacemaker/tree/master/xml/upgrade06.xsl

https://github.com/ClusterLabs/pacemaker/tree/master/xml/upgrade06.xsl
https://github.com/ClusterLabs/pacemaker/tree/master/xml/upgrade06.xsl

122

123

Appendix G. init-Script LSB
Compliance
The relevant part of LSB spec1 includes a description of all the return codes listed here.

Assuming some_service is configured correctly and currently not active, the following sequence will
help you determine if it is LSB compatible:

1. Start (stopped):

/etc/init.d/some_service start ; echo "result: $?"

a. Did the service start?

b. Did the command print result: 0 (in addition to the regular output)?

2. Status (running):

/etc/init.d/some_service status ; echo "result: $?"

a. Did the script accept the command?

b. Did the script indicate the service was running?

c. Did the command print result: 0 (in addition to the regular output)?

3. Start (running):

/etc/init.d/some_service start ; echo "result: $?"

a. Is the service still running?

b. Did the command print result: 0 (in addition to the regular output)?

4. Stop (running):

/etc/init.d/some_service stop ; echo "result: $?"

a. Was the service stopped?

b. Did the command print result: 0 (in addition to the regular output)?

5. Status (stopped):

/etc/init.d/some_service status ; echo "result: $?"

a. Did the script accept the command?

b. Did the script indicate the service was not running?

1 http://refspecs.freestandards.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html

http://refspecs.freestandards.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
http://refspecs.freestandards.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html

Appendix G. init-Script LSB Compliance

124

c. Did the command print result: 3 (in addition to the regular output)?

6. Stop (stopped):

/etc/init.d/some_service stop ; echo "result: $?"

a. Is the service still stopped?

b. Did the command print result: 0 (in addition to the regular output)?

7. Status (failed):

This step is not readily testable and relies on manual inspection of the script.

The script can use one of the error codes (other than 3) listed in the LSB spec to indicate that it is
active but failed. This tells the cluster that before moving the resource to another node, it needs to
stop it on the existing one first.

If the answer to any of the above questions is no, then the script is not LSB compliant. Your options
are then to either fix the script or write an OCF agent based on the existing script.

125

Appendix H. Sample Configurations

Table of Contents
H.1. Empty .. 125
H.2. Simple .. 125
H.3. Advanced Configuration .. 126

H.1. Empty

Example H.1. An Empty Configuration

<cib admin_epoch="0" epoch="0" num_updates="0" have-quorum="false">
 <configuration>
 <crm_config/>
 <nodes/>
 <resources/>
 <constraints/>
 </configuration>
 <status/>
</cib>

H.2. Simple

Example H.2. Simple Configuration - 2 nodes, some cluster options and a resource

<cib admin_epoch="0" epoch="1" num_updates="0" have-quorum="false"
 validate-with="pacemaker-1.0">
 <configuration>
 <crm_config>
 <nvpair id="option-1" name="symmetric-cluster" value="true"/>
 <nvpair id="option-2" name="no-quorum-policy" value="stop"/>
 </crm_config>
 <op_defaults>
 <nvpair id="op-default-1" name="timeout" value="30s"/>
 </op_defaults>
 <rsc_defaults>
 <nvpair id="rsc-default-1" name="resource-stickiness" value="100"/>
 <nvpair id="rsc-default-2" name="migration-threshold" value="10"/>
 </rsc_defaults>
 <nodes>
 <node id="xxx" uname="c001n01" type="normal"/>
 <node id="yyy" uname="c001n02" type="normal"/>
 </nodes>
 <resources>
 <primitive id="myAddr" class="ocf" provider="heartbeat" type="IPaddr">
 <operations>
 <op id="myAddr-monitor" name="monitor" interval="300s"/>
 </operations>
 <instance_attributes>
 <nvpair name="ip" value="10.0.200.30"/>
 </instance_attributes>
 </primitive>
 </resources>
 <constraints>
 <rsc_location id="myAddr-prefer" rsc="myAddr" node="c001n01" score="INFINITY"/>

Appendix H. Sample Configurations

126

 </constraints>
 </configuration>
 <status/>
</cib>

In this example, we have one resource (an IP address) that we check every five minutes and will run
on host c001n01 until either the resource fails 10 times or the host shuts down.

H.3. Advanced Configuration

Example H.3. Advanced configuration - groups and clones with stonith

<cib admin_epoch="0" epoch="1" num_updates="0" have-quorum="false"
 validate-with="pacemaker-1.0">
 <configuration>
 <crm_config>
 <nvpair id="option-1" name="symmetric-cluster" value="true"/>
 <nvpair id="option-2" name="no-quorum-policy" value="stop"/>
 <nvpair id="option-3" name="stonith-enabled" value="true"/>
 </crm_config>
 <op_defaults>
 <nvpair id="op-default-1" name="timeout" value="30s"/>
 </op_defaults>
 <rsc_defaults>
 <nvpair id="rsc-default-1" name="resource-stickiness" value="100"/>
 <nvpair id="rsc-default-2" name="migration-threshold" value="10"/>
 </rsc_defaults>
 <nodes>
 <node id="xxx" uname="c001n01" type="normal"/>
 <node id="yyy" uname="c001n02" type="normal"/>
 <node id="zzz" uname="c001n03" type="normal"/>
 </nodes>
 <resources>
 <primitive id="myAddr" class="ocf" provider="heartbeat" type="IPaddr">
 <operations>
 <op id="myAddr-monitor" name="monitor" interval="300s"/>
 </operations>
 <instance_attributes>
 <nvpair name="ip" value="10.0.200.30"/>
 </instance_attributes>
 </primitive>
 <group id="myGroup">
 <primitive id="database" class="lsb" type="oracle">
 <operations>
 <op id="database-monitor" name="monitor" interval="300s"/>
 </operations>
 </primitive>
 <primitive id="webserver" class="lsb" type="apache">
 <operations>
 <op id="webserver-monitor" name="monitor" interval="300s"/>
 </operations>
 </primitive>
 </group>
 <clone id="STONITH">
 <meta_attributes id="stonith-options">
 <nvpair id="stonith-option-1" name="globally-unique" value="false"/>
 </meta_attributes>
 <primitive id="stonithclone" class="stonith" type="external/ssh">
 <operations>
 <op id="stonith-op-mon" name="monitor" interval="5s"/>
 </operations>
 <instance_attributes id="stonith-attrs">

Advanced Configuration

127

 <nvpair id="stonith-attr-1" name="hostlist" value="c001n01,c001n02"/>
 </instance_attributes>
 </primitive>
 </clone>
 </resources>
 <constraints>
 <rsc_location id="myAddr-prefer" rsc="myAddr" node="c001n01"
 score="INFINITY"/>
 <rsc_colocation id="group-with-ip" rsc="myGroup" with-rsc="myAddr"
 score="INFINITY"/>
 </constraints>
 </configuration>
 <status/>
</cib>

128

129

Appendix I. Further Reading
• Project Website http://www.clusterlabs.org/
• Project Documentation http://www.clusterlabs.org/wiki/Documentation
• A comprehensive guide to cluster commands has been written by Novell1

• Heartbeat configuration: http://www.linux-ha.org/
• Corosync Configuration: http://www.corosync.org/

1 http://www.suse.com/documentation/sle_ha/book_sleha/data/book_sleha.html

http://www.clusterlabs.org/
http://www.clusterlabs.org/wiki/Documentation
http://www.linux-ha.org/
http://www.corosync.org/
http://www.suse.com/documentation/sle_ha/book_sleha/data/book_sleha.html

130

131

Appendix J. Revision History
Revision 1-1 19 Oct 2009 Andrew Beekhof andrew@beekhof.net

Import from Pages.app

Revision 2-1 26 Oct 2009 Andrew Beekhof andrew@beekhof.net
Cleanup and reformatting of docbook xml complete

Revision 3-1 Tue Nov 12 2009 Andrew Beekhof andrew@beekhof.net
Split book into chapters and pass validation
Re-organize book for use with Publican1

Revision 4-1 Mon Oct 8 2012 Andrew Beekhof andrew@beekhof.net
Converted to asciidoc2 (which is converted to docbook for use with Publican3)

1 https://fedorahosted.org/publican/
2 http://www.methods.co.nz/asciidoc
3 https://fedorahosted.org/publican/

mailto:andrew@beekhof.net
mailto:andrew@beekhof.net
mailto:andrew@beekhof.net
https://fedorahosted.org/publican/
mailto:andrew@beekhof.net
http://www.methods.co.nz/asciidoc
https://fedorahosted.org/publican/
https://fedorahosted.org/publican/
http://www.methods.co.nz/asciidoc
https://fedorahosted.org/publican/

132

133

Index
Symbols
0

OCF_SUCCESS, 106
1

OCF_ERR_GENERIC, 106
2

OCF_ERR_ARGS, 107
3

OCF_ERR_UNIMPLEMENTED, 107
4

OCF_ERR_PERM, 107
5

OCF_ERR_INSTALLED, 107
6

OCF_ERR_CONFIGURED, 107
7

OCF_NOT_RUNNING, 107
8

OCF_RUNNING_MASTER, 107
9

OCF_FAILED_MASTER, 107

A
Action, 32

demote, 106
meta-data, 105
monitor, 105
notify, 106
promote, 106
Property

enabled, 32
id, 32
interval, 32
name, 32
on-fail, 32
timeout, 32

start, 105
Status

call-id, 93
crm-debug-origin, 94
crm_feature_set, 93
exec-time, 93
id, 93
interval, 93
last-rc-change, 93
last-run, 93
op-digest, 94
op-status, 93
operation, 93
queue-time, 93
rc-code, 93

transition-key, 94
transition-magic, 94

stop, 105
validate-all, 105

Action Property, 32, 32, 32, 32, 32, 32
Action Status, 93, 93, 93, 93, 93, 93, 93, 93, 93,
93, 93, 94, 94, 94, 94
active_resource, 70, 74

Notification Environment Variable, 70, 74
active_uname, 70, 75

Notification Environment Variable, 70, 75
Add Cluster Node, 20, 21, 22

CMAN, 21
Corosync, 20
Heartbeat, 22

admin_epoch, 15
Cluster Option, 15

Asymmetrical Opt-In, 36
Asymmetrical Opt-In Clusters, 36
attribute, 20, 48

Constraint Expression, 48
Attribute Expression, 47

attribute, 48
operation, 48
type, 48
value, 48

B
batch-limit, 16

Cluster Option, 16
boolean-op, 47

Constraint Rule, 47

C
call-id, 93

Action Status, 93
Changing Cluster Stack, 115
Choosing Between Heartbeat and Corosync, 111
cib-last-written, 16

Cluster Property, 16
CIB_encrypted, 55
CIB_passwd, 55
CIB_port, 55
CIB_server, 55
CIB_user, 55
class, 25, 28

Resource, 28
Clone

Option
clone-max, 68
clone-node-max, 68
globally-unique, 68
interleave, 68

Index

134

notify, 68
ordered, 68

Property
id, 68

Clone Option, 68, 68, 68, 68, 68, 68
Clone Property, 68
Clone Resources, 67
clone-max, 68

Clone Option, 68
clone-node-max, 68

Clone Option, 68
Clones, 67, 69
Cluster, 15

Choosing Between Heartbeat and Corosync,
111
Option

admin_epoch, 15
batch-limit, 16
cluster-delay, 17
Configuration Version, 15
epoch, 15
migration-limit, 17
no-quorum-policy, 17
num_updates, 15
pe-error-series-max, 17
pe-input-series-max, 17
pe-warn-series-max, 17
start-failure-is-fatal, 17
stonith-action, 17
stonith-enabled, 17
stop-orphan-actions, 17
stop-orphan-resources, 17
symmetric-cluster, 17
validate-with, 15

Property
cib-last-written, 16
dc-uuid, 16
have-quorum, 16

Querying Options, 17
Remote administration, 55
Remote connection, 55
Setting Options, 17
Setting Options with Rules, 53
Switching between Stacks, 115

Cluster Option, 15, 15, 15, 15, 16, 17, 17, 17, 17,
17, 17, 17, 17, 17, 17, 17, 17, 17, 17
Cluster Property, 16, 16, 16
Cluster Stack

Corosync, 111
Heartbeat, 111

Cluster Type
Asymmetrical Opt-In, 36
Symmetrical Opt-Out, 36

cluster-delay, 17

Cluster Option, 17
CMAN, 21, 21

Add Cluster Node, 21
Remove Cluster Node, 21

Colocation, 38
id, 39
rsc, 39
score, 39
with-rsc, 39

Colocation Constraints, 39, 39, 39, 39
Configuration, 87, 119

Upgrade manually, 121
Upgrading, 119
Validate XML, 121
Verify, 119

Configuration Version, 15
Cluster, 15

Constraint
Attribute Expression, 47

attribute, 48
operation, 48
type, 48
value, 48

Date Specification, 49
hours, 49
id, 49
monthdays, 49
months, 49
moon, 49
weekdays, 49
weeks, 49
weekyears, 49
yeardays, 49
years, 49

Date/Time Expression, 48
end, 48
operation, 48
start, 48

Duration, 49
Rule, 47

boolean-op, 47
role, 47
score, 47
score-attribute, 47

Constraint Expression, 48, 48, 48, 48, 48, 48, 48
Constraint Rule, 47, 47, 47, 47
Constraints, 35

Colocation, 38
id, 39
rsc, 39
score, 39
with-rsc, 39

Location, 35
id, 36

135

node, 36
rsc, 36
score, 36

Ordering, 37
first, 37
first-action, 73
id, 37
kind, 38
rsc-role, 73
then, 37
then-action, 73
with-rsc-role, 73

Controlling Cluster Options, 53
Convert, 121
Corosync, 20, 21, 21, 111, 111

Add Cluster Node, 20
Remove Cluster Node, 21
Replace Cluster Node, 21

crm-debug-origin, 92, 94
Action Status, 94
Node Status, 92

crmd, 92
Node Status, 92

crm_feature_set, 93
Action Status, 93

CRM_notify_desc, 46
CRM_notify_node, 46
CRM_notify_rc, 46
CRM_notify_recipient, 46
CRM_notify_rsc, 46
CRM_notify_target_rc, 46, 46
CRM_notify_task, 46

D
dampen, 59

Ping Resource Option, 59
Date Specification, 49, 49, 49, 49, 49, 49, 49, 49,
49, 49, 49, 49

hours, 49
id, 49
monthdays, 49
months, 49
moon, 49
weekdays, 49
weeks, 49
weekyears, 49
yeardays, 49
years, 49

Date/Time Expression, 48
end, 48
operation, 48
start, 48

dc-uuid, 16
Cluster Property, 16

demote, 106
OCF Action, 106

demote_resource, 75
Notification Environment Variable, 75

demote_uname, 75
Notification Environment Variable, 75

Determine by Rules, 51
Determine Resource Location, 51
Download, 119

DTD, 119
DTD, 119

Download, 119
Duration, 49, 49

E
enabled, 32

Action Property, 32
end, 48

Constraint Expression, 48
Environment Variable

CIB_encrypted, 55
CIB_passwd, 55
CIB_port, 55
CIB_server, 55
CIB_user, 55
CRM_notify_desc, 46
CRM_notify_node, 46
CRM_notify_rc, 46
CRM_notify_recipient, 46
CRM_notify_rsc, 46
CRM_notify_target_rc, 46, 46
CRM_notify_task, 46
OCF_RESKEY_CRM_meta_notify_

active_resource, 70, 74
active_uname, 70, 75
demote_resource, 75
demote_uname, 75
inactive_resource, 70, 75
inactive_uname, 70, 75
master_resource, 75
master_uname, 75
operation, 70, 74
promote_resource, 75
promote_uname, 75
slave_resource, 75
slave_uname, 75
start_resource, 70, 75
start_uname, 70, 75
stop_resource, 70, 75
stop_uname, 70, 75
type, 70, 74

epoch, 15
Cluster Option, 15

error

Index

136

fatal, 106
hard, 106
soft, 106

exec-time, 93
Action Status, 93

expected, 92
Node Status, 92

F
failure-timeout, 30

Resource Option, 30
fatal, 106

OCF error, 106
feedback

contact information for this manual, xvii
first, 37

Ordering Constraints, 37
first-action, 73

Ordering Constraints, 73

G
globally-unique, 68

Clone Option, 68
Group Property

id, 66
Group Resource Property, 66
Group Resources, 65
Groups, 65, 67

H
ha, 92

Node Status, 92
hard, 106

OCF error, 106
have-quorum, 16

Cluster Property, 16
Heartbeat, 22, 22, 22, 25, 111, 111

Add Cluster Node, 22
Remove Cluster Node, 22
Replace Cluster Node, 22
Resources, 25

host_list, 59
Ping Resource Option, 59

hours, 49
Date Specification, 49

I
id, 28, 32, 36, 37, 39, 49, 66, 68, 71, 91, 93

Action Property, 32
Action Status, 93
Clone Property, 68
Colocation Constraints, 39
Date Specification, 49

Group Resource Property, 66
Location Constraints, 36
Multi-State Property, 71
Node Status, 91
Ordering Constraints, 37
Resource, 28

inactive_resource, 70, 75
Notification Environment Variable, 70, 75

inactive_uname, 70, 75
Notification Environment Variable, 70, 75

interleave, 68
Clone Option, 68

interval, 32, 93
Action Property, 32
Action Status, 93

in_ccm, 92
Node Status, 92

is-managed, 29
Resource Option, 29

J
join, 92

Node Status, 92

K
kind, 38

Ordering Constraints, 38

L
last-rc-change, 93

Action Status, 93
last-run, 93

Action Status, 93
Linux Standard Base

Resources, 26
Location, 35

Determine by Rules, 51
id, 36
node, 36
rsc, 36
score, 36

Location Constraints, 35, 36, 36, 36, 36
Location Relative to other Resources, 38
LSB, 26

Resources, 26

M
master-max, 71

Multi-State Option, 71
master-node-max, 71

Multi-State Option, 71
master_resource, 75

Notification Environment Variable, 75

137

master_uname, 75
Notification Environment Variable, 75

Messaging Layers , 103
meta-data, 105

OCF Action, 105
migration-limit, 17

Cluster Option, 17
migration-threshold, 30

Resource Option, 30
monitor, 105

OCF Action, 105
monthdays, 49

Date Specification, 49
months, 49

Date Specification, 49
moon, 49

Date Specification, 49
Moving, 56

Resources, 56
Multi-state, 71
Multi-State, 73

Option
master-max, 71
master-node-max, 71

Property
id, 71

Multi-State Option, 71, 71
Multi-State Property, 71
Multi-state Resources, 71
multiple-active, 30

Resource Option, 30
multiplier, 59

Ping Resource Option, 59

N
name, 32

Action Property, 32
no-quorum-policy, 17

Cluster Option, 17
Node

attribute, 20
Status, 91

crm-debug-origin, 92
crmd, 92
expected, 92
ha, 92
id, 91
in_ccm, 92
join, 92
uname, 92

node, 36
Location Constraints, 36

Node Status, 91, 92, 92, 92, 92, 92, 92, 92
Notification, 45

SMTP, 45
SNMP, 45

Notification Environment Variable, 70, 70, 70, 70,
70, 70, 70, 70, 70, 70, 74, 74, 74, 75, 75, 75, 75,
75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75
notify, 68, 106

Clone Option, 68
OCF Action, 106

num_updates, 15
Cluster Option, 15

O
OCF, 26

Action
demote, 106
meta-data, 105
monitor, 105
notify, 106
promote, 106
start, 105
stop, 105
validate-all, 105

error
fatal, 106
hard, 106
soft, 106

Resources, 26
OCF Action, 105, 105, 105, 105, 105, 106, 106,
106
OCF error, 106, 106, 106
OCF Resource Agents, 105
ocf-tester, 106
OCF_ERR_ARGS, 107, 107
OCF_ERR_CONFIGURED, 107, 107
OCF_ERR_GENERIC, 106, 106
OCF_ERR_INSTALLED, 107, 107
OCF_ERR_PERM, 107, 107
OCF_ERR_UNIMPLEMENTED, 107, 107
OCF_FAILED_MASTER, 74, 107, 107
OCF_NOT_RUNNING, 74, 107, 107
OCF_RESKEY_CRM_meta_notify_

active_resource, 70, 74
active_uname, 70, 75
demote_resource, 75
demote_uname, 75
inactive_resource, 70, 75
inactive_uname, 70, 75
master_resource, 75
master_uname, 75
operation, 70, 74
promote_resource, 75
promote_uname, 75
slave_resource, 75
slave_uname, 75

Index

138

start_resource, 70, 75
start_uname, 70, 75
stop_resource, 70, 75
stop_uname, 70, 75
type, 70, 74

OCF_RUNNING_MASTER, 74, 107, 107
OCF_SUCCESS, 74, 106, 106
on-fail, 32

Action Property, 32
op-digest, 94

Action Status, 94
op-status, 93

Action Status, 93
Open Cluster Framework

Resources, 26
operation, 48, 48, 70, 74, 93

Action Status, 93
Constraint Expression, 48, 48
Notification Environment Variable, 70, 74

Operation History, 92
Option

admin_epoch, 15
batch-limit, 16
clone-max, 68
clone-node-max, 68
cluster-delay, 17
Configuration Version, 15
dampen, 59
epoch, 15
failure-timeout, 30
globally-unique, 68
host_list, 59
interleave, 68
is-managed, 29
master-max, 71
master-node-max, 71
migration-limit, 17
migration-threshold, 30
multiple-active, 30
multiplier, 59
no-quorum-policy, 17
notify, 68
num_updates, 15
ordered, 68
pe-error-series-max, 17
pe-input-series-max, 17
pe-warn-series-max, 17
priority, 29
remote-clear-port, 55
remote-tls-port, 55
requires, 29
resource-stickiness, 29
start-failure-is-fatal, 17
stonith-action, 17

stonith-enabled, 17
stop-orphan-actions, 17
stop-orphan-resources, 17
symmetric-cluster, 17
target-role, 29
validate-with, 15

ordered, 68
Clone Option, 68

Ordering, 37
first, 37
first-action, 73
id, 37
kind, 38
rsc-role, 73
then, 37
then-action, 73
with-rsc-role, 73

Ordering Constraints, 37, 37, 37, 37, 38, 38, 73,
73, 73, 73

symmetrical, 38
other, 107

P
Pacemaker

naming, 103
pe-error-series-max, 17

Cluster Option, 17
pe-input-series-max, 17

Cluster Option, 17
pe-warn-series-max, 17

Cluster Option, 17
Ping Resource

Option
dampen, 59
host_list, 59
multiplier, 59

Ping Resource Option, 59, 59, 59
priority, 29

Resource Option, 29
promote, 106

OCF Action, 106
promote_resource, 75

Notification Environment Variable, 75
promote_uname, 75

Notification Environment Variable, 75
Property

cib-last-written, 16
class, 28
dc-uuid, 16
enabled, 32
have-quorum, 16
id, 28, 32, 68, 71
interval, 32
name, 32

139

on-fail, 32
provider, 28
timeout, 32
type, 28

provider, 28
Resource, 28

Q
Querying

Cluster Option, 17
Querying Options, 17
queue-time, 93

Action Status, 93

R
rc-code, 93

Action Status, 93
Reattach, 115
Reattach Upgrade, 115
Remote administration, 55
Remote connection, 55
Remote Connection

Option
remote-clear-port, 55
remote-tls-port, 55

Remote Connection Option, 55, 55
remote-clear-port, 55

Remote Connection Option, 55
remote-tls-port, 55

Remote Connection Option, 55
Remove Cluster Node, 21, 21, 22

CMAN, 21
Corosync, 21
Heartbeat, 22

Replace Cluster Node, 21, 22
Corosync, 21
Heartbeat, 22

requires, 29
Resource, 25, 28, 28, 28, 28

Action, 32
class, 25
Constraint

Attribute Expression, 47
Date Specification, 49
Date/Time Expression, 48
Duration, 49
Rule, 47

Constraints, 35
Colocation, 38
Location, 35
Ordering, 37

Group Property
id, 66

Heartbeat, 25
Location

Determine by Rules, 51
Location Relative to other Resources, 38
LSB, 26
Moving, 56
Notification, 45

SMTP, 45
SNMP, 45

OCF, 26
Option

failure-timeout, 30
is-managed, 29
migration-threshold, 30
multiple-active, 30
priority, 29
requires, 29
resource-stickiness, 29
target-role, 29

Property
class, 28
id, 28
provider, 28
type, 28

Start Order, 37
STONITH, 28
System Services, 27
Systemd, 27
Upstart, 27

Resource Option, 29, 29, 29, 29, 30, 30, 30
resource-stickiness, 29

Clones, 69
Groups, 67
Multi-State, 73
Resource Option, 29

Resources, 25, 26, 26, 26, 26, 27, 27, 27, 28, 56
Clones, 67
Groups, 65
Multi-state, 71

Return Code
0

OCF_SUCCESS, 106
1

OCF_ERR_GENERIC, 106
2

OCF_ERR_ARGS, 107
3

OCF_ERR_UNIMPLEMENTED, 107
4

OCF_ERR_PERM, 107
5

OCF_ERR_INSTALLED, 107
6

OCF_ERR_CONFIGURED, 107

Index

140

7
OCF_NOT_RUNNING, 107

8
OCF_RUNNING_MASTER, 107

9
OCF_FAILED_MASTER, 107

OCF_ERR_ARGS, 107
OCF_ERR_CONFIGURED, 107
OCF_ERR_GENERIC, 106
OCF_ERR_INSTALLED, 107
OCF_ERR_PERM, 107
OCF_ERR_UNIMPLEMENTED, 107
OCF_FAILED_MASTER, 74, 107
OCF_NOT_RUNNING, 74, 107
OCF_RUNNING_MASTER, 74, 107
OCF_SUCCESS, 74, 106
other, 107

role, 47
Constraint Rule, 47

Rolling, 115
Rolling Upgrade, 115
rsc, 36, 39

Colocation Constraints, 39
Location Constraints, 36

rsc-role, 73
Ordering Constraints, 73

Rule, 47
boolean-op, 47
Controlling Cluster Options, 53
Determine Resource Location, 51
role, 47
score, 47
score-attribute, 47

S
score, 36, 39, 47

Colocation Constraints, 39
Constraint Rule, 47
Location Constraints, 36

score-attribute, 47
Constraint Rule, 47

Setting
Cluster Option, 17

Setting Options, 17
Setting Options with Rules, 53
Shutdown, 115
Shutdown Upgrade, 115
slave_resource, 75

Notification Environment Variable, 75
slave_uname, 75

Notification Environment Variable, 75
SMTP, 45
SNMP, 45
soft, 106

OCF error, 106
start, 48, 105

Constraint Expression, 48
OCF Action, 105

Start Order, 37
start-failure-is-fatal, 17

Cluster Option, 17
start_resource, 70, 75

Notification Environment Variable, 70, 75
start_uname, 70, 75

Notification Environment Variable, 70, 75
Status, 91

call-id, 93
crm-debug-origin, 92, 94
crmd, 92
crm_feature_set, 93
exec-time, 93
expected, 92
ha, 92
id, 91, 93
interval, 93
in_ccm, 92
join, 92
last-rc-change, 93
last-run, 93
op-digest, 94
op-status, 93
operation, 93
queue-time, 93
rc-code, 93
transition-key, 94
transition-magic, 94
uname, 92

Status of a Node, 91
STONITH, 28

Configuration, 87
Resources, 28

stonith-action, 17
Cluster Option, 17

stonith-enabled, 17
Cluster Option, 17

stop, 105
OCF Action, 105

stop-orphan-actions, 17
Cluster Option, 17

stop-orphan-resources, 17
Cluster Option, 17

stop_resource, 70, 75
Notification Environment Variable, 70, 75

stop_uname, 70, 75
Notification Environment Variable, 70, 75

Switching between Stacks, 115
symmetric-cluster, 17

Cluster Option, 17

141

symmetrical, 38
Ordering Constraints, 38

Symmetrical Opt-Out, 36
Symmetrical Opt-Out Clusters, 36
System Service

Resources, 27
System Services, 27
Systemd, 27

Resources, 27

T
target-role, 29

Resource Option, 29
then, 37

Ordering Constraints, 37
then-action, 73

Ordering Constraints, 73
Time Based Expressions, 48
timeout, 32

Action Property, 32
transition-key, 94

Action Status, 94
transition-magic, 94

Action Status, 94
type, 28, 48, 70, 74

Constraint Expression, 48
Notification Environment Variable, 70, 74
Resource, 28

U
uname, 92

Node Status, 92
Upgrade

Reattach, 115
Rolling, 115
Shutdown, 115

Upgrade manually, 121
Upgrading, 119
Upgrading the Configuration, 119
Upstart, 27

Resources, 27

V
Validate Configuration, 121
Validate XML, 121
validate-all, 105

OCF Action, 105
validate-with, 15

Cluster Option, 15
value, 48

Constraint Expression, 48
Verify, 119

Configuration, 119

W
weekdays, 49

Date Specification, 49
weeks, 49

Date Specification, 49
weekyears, 49

Date Specification, 49
with-rsc, 39

Colocation Constraints, 39
with-rsc-role, 73

Ordering Constraints, 73

X
XML

Convert, 121

Y
yeardays, 49

Date Specification, 49
years, 49

Date Specification, 49

142

	Configuration Explained
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. Read-Me-First
	1.1. The Scope of this Document
	1.2. What Is Pacemaker?
	1.3. Types of Pacemaker Clusters
	1.4. Pacemaker Architecture
	1.4.1. Conceptual Stack Overview
	1.4.2. Internal Components

	Chapter 2. Configuration Basics
	2.1. Configuration Layout
	2.2. The Current State of the Cluster
	2.3. How Should the Configuration be Updated?
	2.4. Quickly Deleting Part of the Configuration
	2.5. Updating the Configuration Without Using XML
	2.6. Making Configuration Changes in a Sandbox
	2.7. Testing Your Configuration Changes
	2.8. Interpreting the Graphviz output
	2.8.1. Small Cluster Transition
	2.8.2. Complex Cluster Transition

	2.9. Do I Need to Update the Configuration on all Cluster Nodes?

	Chapter 3. Cluster Options
	3.1. Special Options
	3.2. Configuration Version
	3.3. Other Fields
	3.4. Fields Maintained by the Cluster
	3.5. Cluster Options
	3.6. Available Cluster Options
	3.7. Querying and Setting Cluster Options
	3.8. When Options are Listed More Than Once

	Chapter 4. Cluster Nodes
	4.1. Defining a Cluster Node
	4.2. Where Pacemaker Gets the Node Name
	4.3. Describing a Cluster Node
	4.4. Corosync
	4.4.1. Adding a New Corosync Node
	4.4.2. Removing a Corosync Node
	4.4.3. Replacing a Corosync Node

	4.5. CMAN
	4.5.1. Adding a New CMAN Node
	4.5.2. Removing a CMAN Node

	4.6. Heartbeat
	4.6.1. Adding a New Heartbeat Node
	4.6.2. Removing a Heartbeat Node
	4.6.3. Replacing a Heartbeat Node

	Chapter 5. Cluster Resources
	5.1. What is a Cluster Resource
	5.2. Supported Resource Classes
	5.2.1. Open Cluster Framework
	5.2.2. Linux Standard Base
	5.2.3. Systemd
	5.2.4. Upstart
	5.2.5. System Services
	5.2.6. STONITH

	5.3. Resource Properties
	5.4. Resource Options
	5.5. Setting Global Defaults for Resource Options
	5.6. Instance Attributes
	5.7. Resource Operations
	5.7.1. Monitoring Resources for Failure
	5.7.2. Setting Global Defaults for Operations
	5.7.2.1. When Resources Take a Long Time to Start/Stop
	5.7.2.2. Multiple Monitor Operations
	5.7.2.3. Disabling a Monitor Operation

	Chapter 6. Resource Constraints
	6.1. Scores
	6.1.1. Infinity Math

	6.2. Deciding Which Nodes a Resource Can Run On
	6.2.1. Options
	6.2.2. Asymmetrical "Opt-In" Clusters
	6.2.3. Symmetrical "Opt-Out" Clusters
	6.2.4. What if Two Nodes Have the Same Score

	6.3. Specifying in which Order Resources Should Start/Stop
	6.3.1. Mandatory Ordering
	6.3.2. Advisory Ordering

	6.4. Placing Resources Relative to other Resources
	6.4.1. Options
	6.4.2. Mandatory Placement
	6.4.3. Advisory Placement

	6.5. Ordering Sets of Resources
	6.6. Ordered Set
	6.7. Two Sets of Unordered Resources
	6.8. Three Resources Sets
	6.9. Collocating Sets of Resources
	6.10. Another Three Resources Sets

	Chapter 7. Receiving Notification for Cluster Events
	7.1. Configuring SNMP Notifications
	7.2. Configuring Email Notifications
	7.3. Configuring Notifications via External-Agent

	Chapter 8. Rules
	8.1. Node Attribute Expressions
	8.2. Time/Date Based Expressions
	8.2.1. Date Specifications
	8.2.2. Durations

	8.3. Sample Time Based Expressions
	8.4. Using Rules to Determine Resource Location
	8.4.1. Using score-attribute Instead of score

	8.5. Using Rules to Control Resource Options
	8.6. Using Rules to Control Cluster Options
	8.7. Ensuring Time Based Rules Take Effect

	Chapter 9. Advanced Configuration
	9.1. Connecting from a Remote Machine
	9.2. Specifying When Recurring Actions are Performed
	9.3. Moving Resources
	9.3.1. Manual Intervention
	9.3.2. Moving Resources Due to Failure
	9.3.3. Moving Resources Due to Connectivity Changes
	9.3.3.1. Tell Pacemaker to monitor connectivity
	9.3.3.2. Tell Pacemaker how to interpret the connectivity data

	9.3.4. Resource Migration
	9.3.4.1. Migration Checklist

	9.4. Reusing Rules, Options and Sets of Operations
	9.5. Reloading Services After a Definition Change

	Chapter 10. Advanced Resource Types
	10.1. Groups - A Syntactic Shortcut
	10.1.1. Group Properties
	10.1.2. Group Options
	10.1.3. Group Instance Attributes
	10.1.4. Group Contents
	10.1.5. Group Constraints
	10.1.6. Group Stickiness

	10.2. Clones - Resources That Get Active on Multiple Hosts
	10.2.1. Clone Properties
	10.2.2. Clone Options
	10.2.3. Clone Instance Attributes
	10.2.4. Clone Contents
	10.2.5. Clone Constraints
	10.2.6. Clone Stickiness
	10.2.7. Clone Resource Agent Requirements
	10.2.7.1. Clone Notifications
	10.2.7.2. Proper Interpretation of Notification Environment Variables

	10.3. Multi-state - Resources That Have Multiple Modes
	10.3.1. Multi-state Properties
	10.3.2. Multi-state Options
	10.3.3. Multi-state Instance Attributes
	10.3.4. Multi-state Contents
	10.3.5. Monitoring Multi-State Resources
	10.3.6. Multi-state Constraints
	10.3.7. Multi-state Stickiness
	10.3.8. Which Resource Instance is Promoted
	10.3.9. Multi-state Resource Agent Requirements
	10.3.10. Multi-state Notifications
	10.3.11. Multi-state - Proper Interpretation of Notification Environment Variables

	Chapter 11. Utilization and Placement Strategy
	11.1. Background
	11.2. Utilization attributes
	11.3. Placement Strategy
	11.4. Allocation Details
	11.4.1. Which node is preferred to be chosen to get consumed first on allocating resources?
	11.4.1.1. Which node has more free capacity?

	11.4.2. Which resource is preferred to be chosen to get assigned first?

	11.5. Limitations
	11.6. Strategies for Dealing with the Limitations

	Chapter 12. Resource Templates
	12.1. Abstract
	12.2. Configuring Resources with Templates
	12.3. Referencing Templates in Constraints

	Chapter 13. Configure STONITH
	13.1. What Is STONITH
	13.2. What STONITH Device Should You Use
	13.3. Configuring STONITH
	13.4. Example

	Chapter 14. Status - Here be dragons
	14.1. Node Status
	14.2. Transient Node Attributes
	14.3. Operation History
	14.3.1. Simple Example
	14.3.2. Complex Resource History Example

	Chapter 15. Multi-Site Clusters and Tickets
	15.1. Abstract
	15.2. Challenges for Multi-Site Clusters
	15.3. Conceptual Overview
	15.3.1. Components and Concepts
	15.3.1.1. Ticket
	15.3.1.2. Dead Man Dependency
	15.3.1.3. CTR (Cluster Ticket Registry)
	15.3.1.4. Configuration Replication

	15.4. Configuring Ticket Dependencies
	15.5. Managing Multi-Site Clusters
	15.5.1. Granting and Revoking Tickets Manually
	15.5.2. Granting and Revoking Tickets via a Cluster Ticket Registry
	15.5.2.1. Booth
	15.5.2.1.1. Requirements

	15.5.3. General Management of Tickets

	15.6. For more information

	Appendix A. FAQ
	Appendix B. More About OCF Resource Agents
	B.1. Location of Custom Scripts
	B.2. Actions
	B.3. How are OCF Return Codes Interpreted?
	B.4. OCF Return Codes
	B.5. Exceptions

	Appendix C. What Changed in 1.0
	C.1. New
	C.2. Changed
	C.3. Removed

	Appendix D. Installation
	D.1. Choosing a Cluster Stack
	D.2. Enabling Pacemaker
	D.2.1. For Corosync
	D.2.2. For Heartbeat

	Appendix E. Upgrading Cluster Software
	E.1. Version Compatibility
	E.2. Complete Cluster Shutdown
	E.2.1. Procedure

	E.3. Rolling (node by node)
	E.3.1. Procedure
	E.3.2. Version Compatibility
	E.3.3. Crossing Compatibility Boundaries

	E.4. Disconnect and Reattach
	E.4.1. Procedure
	E.4.2. Notes

	Appendix F. Upgrading the Configuration from 0.6
	F.1. Preparation
	F.2. Perform the upgrade
	F.2.1. Upgrade the software
	F.2.2. Upgrade the Configuration
	F.2.3. Manually Upgrading the Configuration

	Appendix G. init-Script LSB Compliance
	Appendix H. Sample Configurations
	H.1. Empty
	H.2. Simple
	H.3. Advanced Configuration

	Appendix I. Further Reading
	Appendix J. Revision History
	Index

